Entrainment and growth of vortical disturbances in the channel-entrance region

2021 ◽  
Vol 927 ◽  
Author(s):  
Pierre Ricco ◽  
Claudia Alvarenga

The entrainment of free-stream unsteady three-dimensional vortical disturbances in the entry region of a channel is studied via matched asymptotic expansions and by numerical means. The interest is in flows at Reynolds numbers where experimental studies have documented the occurrence of intense transient growth, despite the flow being stable according to classical stability analysis. The analytical description of the vortical perturbations at the channel mouth reveals how the oncoming disturbances penetrate into the wall-attached shear layers and amplify downstream. The effects of the channel confinement, the streamwise pressure gradient and the viscous/inviscid interplay between the oncoming disturbances and the boundary-layer perturbations are discussed. The composite perturbation velocity profiles are employed as initial conditions for the unsteady boundary-region perturbation equations. At a short distance from the channel mouth, the disturbance flow is mostly confined within the shear layers and assumes the form of streamwise-elongated streaks, while farther downstream the viscous disturbances permeate the whole channel although the base flow is still mostly inviscid in the core. Symmetrical disturbances exhibit a more significant growth than anti-symmetrical disturbances, the latter maintaining a nearly constant amplitude for several channel heights downstream before growing transiently, a unique feature not reported in open boundary layers. The disturbances are more intense as the frequency decreases or the bulk Reynolds number increases. We compute the spanwise wavelengths that cause the most intense downstream growth and the threshold wall-normal wavelengths below which the perturbations are damped through viscous dissipation.

2015 ◽  
Vol 766 ◽  
pp. 405-435 ◽  
Author(s):  
Oliver T. Schmidt ◽  
Seyed M. Hosseini ◽  
Ulrich Rist ◽  
Ardeshir Hanifi ◽  
Dan S. Henningson

AbstractThe global non-modal stability of the flow in a right-angled streamwise corner is investigated. Spatially confined linear optimal initial conditions and responses are obtained by use of direct-adjoint looping. Two base states are considered, the classical self-similar solution for a zero streamwise pressure gradient, and a modified solution that mimics leading-edge effects commonly observed in experimental studies. The latter solution is obtained in a reverse engineering fashion from published measurement data. Prior to the global analysis, a classical local linear stability and sensitivity analysis of both base states is conducted. It is found that the base-flow modification drastically reduces the critical Reynolds number through an inviscid mechanism, the so-called corner mode. A survey of the geometry of the two base states confirms that the modification greatly aggravates the inflectional nature of the flow. Global optimals are calculated for subcritical and supercritical Reynolds numbers, and for two finite optimization times. The optimal initial conditions are found to be self-confined in the spanwise directions, and symmetric with respect to the corner bisector. They evolve into streaks or streamwise modulated wavepackets, depending on the base state. Substantial transient growth caused by the Orr mechanism and the lift-up effect is observed.


2021 ◽  
Vol 932 ◽  
Author(s):  
Pierre Ricco ◽  
Claudia Alvarenga

The development and growth of unsteady three-dimensional vortical disturbances entrained in the entry region of a circular pipe is investigated by asymptotic and numerical methods for Reynolds numbers between $1000$ and $10\,000$ , based on the pipe radius and the bulk velocity. Near the pipe mouth, composite asymptotic solutions describe the dynamics of the oncoming disturbances, revealing how these disturbances are altered by the viscous layer attached to the pipe wall. The perturbation velocity profiles near the pipe mouth are employed as rigorous initial conditions for the boundary-region equations, which describe the flow in the limit of low frequency and large Reynolds number. The disturbance flow is initially primarily present within the base-flow boundary layer in the form of streamwise-elongated vortical structures, i.e. the streamwise velocity component displays an intense algebraic growth, while the cross-flow velocity components decay. Farther downstream the disturbance flow occupies the whole pipe, although the base flow is mostly inviscid in the core. The transient growth and subsequent viscous decay are confined in the entrance region, i.e. where the base flow has not reached the fully developed Poiseuille profile. Increasing the Reynolds number and decreasing the frequency causes more intense perturbations, whereas small azimuthal wavelengths and radial characteristic length scales intensify the viscous dissipation of the disturbance. The azimuthal wavelength that causes the maximum growth is found. The velocity profiles are compared successfully with available experimental data and the theoretical results are helpful to interpret the only direct numerical dataset of a disturbed pipe-entry flow.


1989 ◽  
Vol 208 ◽  
pp. 257-320 ◽  
Author(s):  
Fazle Hussain ◽  
Hyder S. Husain

This paper summarizes experimental studies of incompressible elliptic jets of different aspect ratios and initial conditions, and effects of excitations at selected frequencies and amplitudes. Elliptic jets are quite different from the extensively studied plane and circular jets - owing mainly to the fact that the azimuthal curvature variation of a vortical structure causes its non-uniform self-induction and hence complex three-dimensional deformation. Such deformation, combined with properly selected excitation can substantially alter entrainment and other turbulence phenomena, thus suggesting preference for the elliptic shape in many jet applications. The dominance of coherent structures in the jet far field is evident from the finding that switching over of the cross-section shape continues at least up to 100 equivalent diameters De. The locations and the number of switchovers are strongly dependent on the initial condition, on the aspect ratio, and, when excited, on the Strouhal number and the excitation level. We studied jets with constant exit momentum thickness θe, all around the perimeter, thus separating the effects of azimuthal variations of θe, (typical of elliptic jets) and of the shear-layer curvature. Also investigated are the instability characteristics, and enhanced entrainment caused by bifurcation as well as pairing of vortical structures. We discuss shear-layer and jet- column domains, and find the latter to be characterized by two modes : the preferred mode and the stable pairing mode - similar to those found in circular jets -both modes scaling on the newly-defined lengthscale De. The paper documents some time- average measurements and their comparison with those in circular and plane jets.


2013 ◽  
Vol 724 ◽  
pp. 642-670 ◽  
Author(s):  
S. Cherubini ◽  
M. D. De Tullio ◽  
P. De Palma ◽  
G. Pascazio

AbstractThis work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. Amplification mechanisms are described which can bypass the asymptotical growth of Tollmien–Schlichting waves. Smooth axisymmetric roughness elements of different height have been studied, at different Reynolds numbers. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can localize the optimal disturbance characterizing the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds numbers, a strong amplification mechanism has been recovered, inducing an increase of several orders of magnitude of the energy gain with respect to the Blasius case. In particular, the highest value of the energy gain is obtained for an initial varicose perturbation, differently to what found for a streaky parallel flow. Optimal varicose perturbations grow very rapidly by transporting the strong wall-normal shear of the base flow, which is localized in the wake of the bump. Such optimal disturbances are found to lead to transition for initial energies and amplitudes considerably smaller than sinuous optimal ones, inducing hairpin vortices downstream of the roughness element.


2008 ◽  
Vol 607 ◽  
pp. 267-277 ◽  
Author(s):  
H. M. BLACKBURN ◽  
S. J. SHERWIN ◽  
D. BARKLEY

We show that suitable initial disturbances to steady or long-period pulsatile flows in a straight tube with an axisymmetric 75%-occlusion stenosis can produce very large transient energy growths. The global optimal disturbances to an initially axisymmetric state found by linear analyses are three-dimensional wave packets that produce localized sinuous convective instability in extended shear layers. In pulsatile flow, initial conditions that trigger the largest disturbances are either initiated at, or advect to, the separating shear layer at the stenosis in phase with peak systolic flow. Movies are available with the online version of the paper.


1991 ◽  
Vol 231 ◽  
pp. 501-528 ◽  
Author(s):  
Lambros Kaiktsis ◽  
George Em Karniadakis ◽  
Steven A. Orszag

A numerical study of three-dimensional equilibria and transition to turbulence in flow over a backward-facing step is performed using direct numerical solution of the incompressible Navier-Stokes equations. The numerical method is a high-order-accurate mixed spectral/spectral-element method with efficient viscous outflow boundary conditions. The appearance of three-dimensionality in nominally two-dimensional geometries is investigated at representative Reynolds numbers ranging from the onset of three-dimensional bifurcation to later transitional stages. Strongly three-dimensional regions are identified through standard correlation coefficients and new three-dimensionality indices, as well as through instantaneous and time-average streamline patterns and vorticity contours. Our results indicate that onset of three-dimensionality occurs at the boundaries between the primary and secondary recirculating zones with the main channel flow, the latter being the most stable flow component. There is. therefore, strong secondary instability in the shear layers, mainly due to the one emanating from the step corner.The flow further downstream is excited through the action of the upstream shear layers acquiring a wavy form closely resembling Tollmien–Schlichting waves both spatially and temporally with a characteristic frequency f1; upstream, at the shear layer another incommensurate frequency, f2, is present. The two-frequency flow locks-in to a single frequency if external excitations are imposed at the inflow at a frequency close to f1 or f2; the smaller amplitude excitations, however, may cause a strong quasi-periodic response. Such excitations may significantly increase or decrease (by more than 20%) the length of the primary separation zone XR at lock-in or quasi-periodic states. The equilibrium states resulting from the secondary instability at supercritical Reynolds numbers produce a flow modulated in the spanwise direction, with corresponding variations in the reattachment location XR. While three-dimensionality explains partially the discrepancy between numerical predictions and experimental results on XR at higher Reynolds number Re, the main source of discrepancy is attributed to the inflow conditions, and in particular to external disturbances superimposed on the mean flow, the latter being the main reason also for the somewhat earlier transition found in laboratory experiments.


Author(s):  
Peter W Duck

The stability of developing entry flow in both two-dimensional channels and circular pipes is investigated for large Reynolds numbers. The basic flow is generated by uniform flow entering a channel/pipe, which then provokes the growth of boundary layers on the walls, until (far downstream) fully developed flow is attained; the length for this development is well known to be (Reynolds number)×the channel/pipe width/diameter. This enables the use of high-Reynolds-number theory, leading to boundary-layer-type equations which govern the flow; as such, there is no need to impose heuristic parallel-flow approximations. The resulting base flow is shown to be susceptible to significant, three-dimensional, transient (initially algebraic) growth in the streamwise direction, and, consequently, large amplifications to flow disturbances are possible (followed by ultimate decay far downstream). It is suggested that this initial amplification of disturbances is a possible and alternative mechanism for flow transition.


1969 ◽  
Vol 38 (1) ◽  
pp. 39-59 ◽  
Author(s):  
M. Lessen ◽  
G. Harpavat ◽  
H. M. Zien

The linear, normal mode instability of three-dimensional laminar and turbulent shear layers is studied. The flows consist of two streams semi-infinitely extended in the y-direction, flowing obliquely in the x-z plane. It is found that the stability of the flows depends on the main flow velocity components in the direction of the disturbance wave-number vector. Numerical calculations are performed to obtain the neutral stability curves. Under the usual parallel unperturbed flow assumption, the neutral stability curves pass through the origin of the α-R diagram, where α is the wave-number and R is the flow Reynolds number. It is also found that eddy viscosity has a destabilizing effect for small Reynolds numbers but a stabilizing effect at larger Reynolds numbers. Because any linear perturbation trajectory eventually leaves the unstable region of the α-R plane, it is probable that a Lin-Benney or Taylor-Goertler secondary instability ensues. Suitable components of the existing turbulence grow and develop into a large eddy system which causes rapid entrainment, giving rise to a turbulent burst. A first-order non-parallel correction is made to the neutral stability curves. The new curves have both upper and lower branches, and there exist minimum critical Reynolds numbers.


2011 ◽  
Vol 671 ◽  
pp. 52-95 ◽  
Author(s):  
PETER J. DIAMESSIS ◽  
GEOFFREY R. SPEDDING ◽  
J. ANDRZEJ DOMARADZKI

The mean velocity profile scaling and the vorticity structure of a stably stratified, initially turbulent wake of a towed sphere are studied numerically using a high-accuracy spectral multi-domain penalty method model. A detailed initialization procedure allows a smooth, minimum-transient transition into the non-equilibrium (NEQ) regime of wake evolution. A broad range of Reynolds numbers,Re= UD/ν ∈ [5 × 103, 105] and internal Froude numbers,Fr= 2U/(ND) ∈ [4, 64] (U,Dare characteristic velocity and length scales, andNis the buoyancy frequency) is examined. The maximum value ofReand the range ofFrvalues considered allow extrapolation of the results to geophysical and naval applications.At higherRe, the NEQ regime, where three-dimensional turbulence adjusts towards a quasi-two-dimensional, buoyancy-dominated flow, lasts significantly longer than at lowerRe. AtRe= 5 × 103, vertical fluid motions are rapidly suppressed, but atRe= 105, secondary Kelvin–Helmholtz instabilities and ensuing turbulence are clearly observed up toNt≈ 100. The secondary motions intensify with increasing stratification strength and have significant vertical kinetic energy.These results agree with existing scaling of buoyancy-driven shear onRe/Fr2and suggest that, in the field, the NEQ regime may last up toNt≈ 1000. At a given highRevalue, during the NEQ regime, the scale separation between Ozmidov and Kolmogorov scale is independent ofFr. This first systematic numerical investigation of stratified turbulence (as defined by Lilly,J. Atmos. Sci.vol. 40, 1983, p. 749), in a controlled localized flow with turbulent initial conditions suggests that a reconsideration of the commonly perceived life cycle of a stratified turbulent event may be in order for the correct turbulence parametrizations of such flows in both geophysical and operational contexts.


2006 ◽  
Vol 128 (6) ◽  
pp. 1228-1235 ◽  
Author(s):  
B. Xu ◽  
X. Ai ◽  
B. Q. Li

Stabilities of surface-tension-driven convection in an open cylinder are investigated numerically. The cylinder is heated laterally through its sidewall and is cooled at free surface by radiation. A seeding crystal at constant temperature is in contact with the free surface. Axisymmetric base flow is solved using the high-order finite difference method. Three-dimensional perturbation is applied to the obtained base flow to determine the critical Marangoni numbers at which the axisymmetry is broken. The eigenvalue matrix equation is solved using linear fractional transformation with banded matrix structure taken into account. Critical Marangoni-Reynolds numbers are obtained at various boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document