scholarly journals Thermoelectric precession in turbulent magnetoconvection

2021 ◽  
Vol 930 ◽  
Author(s):  
Yufan Xu ◽  
Susanne Horn ◽  
Jonathan M. Aurnou

We present laboratory measurements of the interaction between thermoelectric currents and turbulent magnetoconvection. In a cylindrical volume of liquid gallium heated from below and cooled from above and subject to a vertical magnetic field, it is found that the large-scale circulation (LSC) can undergo a slow axial precession. Our experiments demonstrate that this LSC precession occurs only when electrically conducting boundary conditions are employed, and that the precession direction reverses when the axial magnetic field direction is flipped. A thermoelectric magnetoconvection (TEMC) model is developed that successfully predicts the zeroth-order magnetoprecession dynamics. Our TEMC magnetoprecession model hinges on thermoelectric current loops at the top and bottom boundaries, which create Lorentz forces that generate horizontal torques on the overturning large-scale circulatory flow. The thermoelectric torques in our model act to drive a precessional motion of the LSC. This model yields precession frequency predictions that are in good agreement with the experimental observations. We postulate that thermoelectric effects in convective flows, long argued to be relevant in liquid metal heat transfer and mixing processes, may also have applications in planetary interior magnetohydrodynamics.

1962 ◽  
Vol 13 (1) ◽  
pp. 21-32 ◽  
Author(s):  
W. F. Hughes ◽  
R. A. Elco

The motion of an electrically conducting, incompressible, viscous fluid in the presence of a magnetic field is analyzed for flow between two parallel disks, one of which rotates at a constant angular velocity. The specific application to liquid metal lubrication in thrust bearings is considered. The two field configurations discussed are: an axial magnetic field with a radial current and a radial magnetic field with an axial current. It is shown that the load capacity of the bearing is dependent on the MHD interactions in the fluid and that the frictional torque on the rotor can be made zero for both field configurations by supplying electrical energy through the electrodes to the fluid.


2000 ◽  
Vol 123 (1) ◽  
pp. 31-42
Author(s):  
J. Liu ◽  
G. Talmage ◽  
J. S. Walker

The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.


1958 ◽  
Vol 36 (11) ◽  
pp. 1509-1525 ◽  
Author(s):  
E. R. Niblett

Chandrasekhar's theory of the stability of viscous flow of an electrically conducting fluid between coaxial rotating cylinders with perfectly conducting walls is extended to include the case of non-conducting walls, and it is found that their effect is to reduce the critical Taylor numbers and increase the wavelength of the instability patterns by considerable amounts. An experiment designed to measure the values of magnetic field and rotation speed at the onset of instability in mercury between perspex cylinders is described. The radioactive isotopes Hg197 and Hg203 were used to trace the flow. The results support the theoretical prediction that the boundary conditions can have a large effect on the motion.


Author(s):  
F. Pétrélis ◽  
S. Fauve

We present a review of the different models that have been proposed to explain reversals of the magnetic field generated by a turbulent flow of an electrically conducting fluid (fluid dynamos). We then describe a simple mechanism that explains several features observed in palaeomagnetic records of the Earth’s magnetic field, in numerical simulations and in a recent dynamo experiment. A similar model can also be used to understand reversals of large-scale flows that often develop on a turbulent background.


2016 ◽  
Vol 12 (S329) ◽  
pp. 146-150
Author(s):  
B. Buysschaert ◽  
C. Neiner ◽  
C. Aerts

AbstractSimultaneously and coherently studying the large-scale magnetic field and the stellar pulsations of a massive star provides strong complementary diagnostics suitable for detailed stellar modelling. This hybrid method is called magneto-asteroseismology and permits the determination of the internal structure and conditions within magnetic massive pulsators, for example the effect of magnetism on non-standard mixing processes. Here, we overview this technique, its requirements, and list the currently known suitable stars to apply the method.


2010 ◽  
Vol 37 (3) ◽  
pp. 161-187
Author(s):  
B.R. Sharma ◽  
R.N. Singh

The effect of a weak uniform axial magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids flowing due to a rotating disc of uniform high suction is examined. Neglecting the induced electric field the equations governing the motion, temperature and concentration are solved in cylindrical polar coordinate by expanding the flow parameters as well as the temperature and the concentration in powers of suction parameter. The solution obtained for concentration distribution is plotted against the different axial distances from the disc for various values of non-dimensional parameters. It is found that the temperature gradient, axial magnetic field, Reynolds number, Schmidt number, Prandtl number and suction parameter effect the species separation significantly.


1971 ◽  
Vol 50 (3) ◽  
pp. 609-623 ◽  
Author(s):  
David E. Loper

The prototype linear spin-up problem consisting of a homogeneous viscous electrically conducting fluid confined between two infinite flat rotating electrically conducting plates in the presence of an applied axial magnetic field is studied in an effort to understand better the strength and nature of the coupling between a fluid and its rotating conducting container. It is assumed that the response time of the bounding plates to a magnetic perturbation is much less than the fluid spin-up time and that the plate conductivity is an arbitrary function of distance from the fluid-plate interface. The general Laplace transform solution is inverted and discussed for three special cases: magnetic diffusion regions thick compared with fluid depth during spin-up, arbitrary magnetic field strength and boundary conductance; magnetic diffusion regions thin, weak conductance, arbitrary field; magnetic diffusion regions thin, strong conductance, arbitrary field. In each case conductance of the boundary strengthens the coupling between fluid and boundary, thereby decreasing the spin-up time. The corresponding single plate analysis of Loper (1970a) is found to predict spin-up accurately only if the boundary conductance is much smaller than that of the fluid. The fluid possesses an oscillatory mode of spin-up if the magnetic diffusion regions are thin and boundary conductance is large. That is, the inviscid current-free core of fluid rotates significantly faster than the boundaries during a portion of the spin-up process.


2021 ◽  
Author(s):  
Jérémy Dargent ◽  
Federico Lavorenti ◽  
Pierre Henri ◽  
Francesco Califano

<p>Magnetic reconnexion and Kelvin-Helmholtz (KH) instability are usually recognized as the two main mixing processes along magnetopauses. However, a recent work [Dargent et al., 2019] showed that in Mercury’s conditions, another instability can grow faster than the KH instability along the magnetopause. This instability seems to rely on gradients of density and/or magnetic field and develops large-scales finger-like structures that prevents the growth of the KH vortices. In this work, I will characterize this instability and try to identify it. In particular, I will look at the dependance of the growth rate of this instability to the different parameters of the plasma and compare it to the growth rate of the Kelvin-Helmholtz instability.</p>


2013 ◽  
Vol 717 ◽  
pp. 347-360 ◽  
Author(s):  
S. M. Tobias ◽  
F. Cattaneo

AbstractWe argue that a method developed by Ångström (Ann. Phys. Chem., vol. 114, 1861, pp. 513–530) to measure the thermal conductivity of solids can be adapted to determine the effective diffusivity of a large-scale magnetic field in a turbulent electrically conducting fluid. The method consists of applying an oscillatory source and measuring the steady-state response. We illustrate this method in a two-dimensional system. This geometry is chosen because it is possible to compare the results with independent methods that are restricted to two-dimensional flows. We describe two variants of this method: one (the ‘turbulent Ångström method’) that is better suited to laboratory experiments and a second (the ‘method of oscillatory sines’) that is effective for numerical experiments. We show that, if correctly implemented, all methods agree. Based on these results we argue that these methods can be extended to three-dimensional numerical simulations and laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document