Dynamic Viscoelastic Incremental-Layerwise Finite Element Method for Multilayered Structure Analysis Based on the Relaxation Approach

2014 ◽  
Vol 30 (6) ◽  
pp. 593-602 ◽  
Author(s):  
M. Malakouti ◽  
M. Ameri ◽  
P. Malekzadeh

AbstractThis paper presents an axisymmetric layerwise finite element formulation for dynamic analysis of laminated structures with embedded viscoelastic material whose constitutive behavior is represented by the Prony-generalized Maxwell series. To account the time dependence of the constitutive relations of linear viscoelastic materials, the incremental formulation in the temporal domain is used. Layerwise finite element has been shown to provide an efficient and accurate tool for the simulation of laminated structure. Most of the previous work on numerical simulation of laminated structures has been limited to elastic material behavior. Thus, the current work focuses on layerwise finite element analysis of laminated structures with embedded viscoelastic material. A computer code based on the presented formulation has been developed to provide the numerical results. The present approach is verified by studying its convergence behavior and comparing the numerical results with those obtained using the ABAQUS software. Finally, and as an application of the presented formulation, the effects of load duration on the dynamic structural responses of multilayered pavements are studied.

2008 ◽  
Vol 47-50 ◽  
pp. 1011-1014
Author(s):  
V.L. Sateesh ◽  
C.S. Upadhyay ◽  
C. Venkatesan

Electric field-polarization interaction shows nonlinear effects in the constitutive relations. In this study, an attempt is made to include these interaction effects in the finite element formulation. A layer-by-layer finite element code is developed to handle the linear and nonlinear problems. Linear and nonlinear analysis is carried out for a smart plate with surfacemounted distributed piezo layer. The nonlinearity leads to a significant increase in the transverse deformation.


Author(s):  
Rutuja Suhas Joshi ◽  
David C. Roberts ◽  
Hany Ghoneim

Oil seals or radial lip seals are widely used in reciprocating, oscillating and rotating shaft applications. The sealability and durability of a lip seal greatly depends on the contact load and contact pressure distribution. It is challenging to find these contact parameters of the seal due to non-linear material behavior and small contact width, therefore numerical simulation can prove to be a viable method. In this paper, to address these challenges and to develop a robust numerical methodology, a Finite Element Model of a lip seal is created in ANSYS APDL. This model includes contact elements to model the lip seal’s contact-fit with certain interference, nonlinear material properties of elastomer and effect of the finger spring molded in the rubber body of the seal. The parameters for two term Mooney Rivlin Model for elastomer are obtained from simple uniaxial tension test. The numerical results demonstrate that the contact load exerted by the composite seal (with spring) is higher than the contact load exerted by elastomer portion of seal alone. It can be implied that the spring augments the radial load and increases the stiffness of the lip, which improves the lip’s sealability and durability. Experimental study is carried to validate the numerical results. The experimental results correspond well with the numerical results.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1272 ◽  
Author(s):  
Todor Zhelyazov

This article investigates the material behavior within multiple-component systems. Specifically, a structural concrete element strengthened to flexure with externally-bonded fiber-reinforced polymer (FRP) material is considered. Enhancements of mechanical performances of the composite structural element resulting from synergies in the framework of the multiple-component system are studied. The research work comprises the determination of the constitutive relations for the materials considered separately as well as the investigation of materials’ response within a complex system such as the composite structural element. The definition of the material models involves a calibration of the model constants based on characterization tests. The constitutive relations are integrated into the finite element model to study the material behavior within the multiple-component system. Results obtained by finite element analysis are compared with experimental results from the literature. The finite element analysis provides valuable information about the evolution of some internal variables, such as mechanical damage accumulation. The material synergies find expression in the load-carrying capacity enhancement and the delay in the damage accumulation in concrete.


1999 ◽  
Author(s):  
Hyun-Yong Jeong

Abstract A macroscopic yield criterion for porous solids with pressure-sensitive matrices modeled by Coulomb’s yield criterion was obtained by generalizing Gurson’s yield criterion with consideration of the hydrostatic yield stresses for a spherical thick-walled shell and by fitting the finite element results of a voided cube. The macroscopic yield criterion is valid for negative mean normal stresses as well as for positive mean normal stresses. From the yield criterion, a plastic potential function for the porous solids was derived either for plastic normality flow or for plastic non-normality flow of pressure-sensitive matrices. In addition, elastic relations, an evolution rule for the plastic behavior of the matrices, a consistency equation and a void volume evolution equation were presented to complete a set of constitutive relations. The set of constitutive relations was implemented into a finite element code ABAQUS to analyze the material behavior of rubber-toughened epoxies. The cavitation and the deformation behavior were analyzed around a crack tip under three-point bending and around notch tips under four-point bending. In the numerical analyses, the cavitation of rubber particles was considered via a stress-controlled void nucleation model. The numerical results indicate that a reasonable cavitation zone can be obtained with void nucleation being controlled by the macroscopic mean normal stress, and a plastic zone is smaller around a notch tip under compression than under tension. These numerical results agree well with corresponding experimental results on the cavitation and plastic zones.


Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.


2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.


2021 ◽  
Vol 71 (1) ◽  
pp. 58-64
Author(s):  
Raviduth Ramful

Abstract Full-culm bamboo has been used for millennia in construction. Specific connections are normally required to suit its unique morphology and nonuniform structure. Presently, the use of full-culm bamboo is limited in the construction industry as a result of a lack of information and test standards about the use and evaluation of full-culm connections. This study aims to further explore this area by investigating the failure modes in bamboo bolt connections in uniaxial tension by considering fiber direction in finite element analysis. Three types of bolt configurations of varying permutations, namely, single, dual, and orthogonal, were investigated. An orthotropic material was used as a constitutive model in finite element formulation to capture the inhomogeneity prevailing in bamboo culm. From the strain-field analysis of a hollow-inhomogeneous model representing bamboo, shear-out failure was dominant, as a localized area equivalent to the bolt diameter was affected due to high material orthotropy with high axial strength but weak radial and tangential strength. Bearing failure is assumed to precede shear-out failure at the bolt–bamboo contact interface, as the embedding strength was affected by localized strain concentration. The strain distribution in various bolt arrangements was found to vary between bolted connections of inhomogeneous-hollow geometry of bamboo and the ones of inhomogeneous-solid geometry representing timber. The observation in this study highlights the need for alternative design criteria to specifically assess the damage mechanism in bamboo connections.


1980 ◽  
Vol 1 ◽  
pp. 37-41 ◽  
Author(s):  
D. V. Reddy ◽  
W. Bobby ◽  
M. Arockiasamy ◽  
R. T. Dempster

Calving of floating ice shelves is studied by a viscoelastic finite-element analysis. The fan-shaped breaking-up of glaciers due to forces that cause bending on creeping ice is assumed to be axisymmetric. Bending may be due to geometry of the bcdrock, action of tides and waves, and imbalance (at the ice front) between the stress in the ice and the sea-water pressure.The bulk and shear moduli of the ice are represented by relaxation functions of the Prony series, which is a discrete relaxation spectrum composed of a constant and a summation of exponential terms. These properties are also functions of temperature, that varies over the thickness of the ice shelf. The temperature distribution across the thickness of the ice is obtained from calculations based on a linear dependence of thermal conductivity on the temperature. Numerical results are presented for various calving mechanisms. A computer code, VISIC1, is developed by modifying a finite-element viscoelastic code, VISICE, for floating ice islands. The buoyancy of the water is taken into account by a Winkler spring model, with the spring force determined from displaced volume. Locations of crack initiation obtained from the analysis are used to predict the iceberg size immediately after calving.


2020 ◽  
Vol 57 (6A) ◽  
pp. 61
Author(s):  
Hoa Cong Vu

In this paper, a damage model using cohesive damage zone for the simulation of progressive delamination under variable mode is presented. The constitutive relations, based on liner softening law, are using for formulation of the delamination onset and propagation. The implementation of the cohesive elements is described, along with instructions on how to incorporate the elements into a finite element mesh. The model is implemented in a finite element formulation in ABAQUS. The numerical results given by the model are compare with experimental data


Sign in / Sign up

Export Citation Format

Share Document