Effect of the Orientation of Hexagonal Fibers on the Effective Elastic Properties of Unidirectional Composites

2016 ◽  
Vol 34 (3) ◽  
pp. 257-267 ◽  
Author(s):  
H. Wang ◽  
Y.-X. Kang ◽  
B. Liu ◽  
Q.-H. Qin

AbstractExisting studies reveal that the shape corners of hexagonal fiber affect the degree of constraint on the matrix material. However, none of these studies included the effect of orientation of hexagonal fibers. In this study, a computational micromechanics model of oriented hexagonal fibers in periodic unidirectional composite materials is established for the determination of effective orthotropic elastic properties of the composite. In the present numerical modeling, the representative unit composite cell including the matrix material and the single oriented hexagonal fiber or random oriented hexagonal fibers is solved by micro-scale finite element analysis with different stress loads and periodic displacement boundary conditions, which are applied along the cell boundary to meet the requirement of straight-line constraint during deformation of the cell. Subsequently, the effective elastic properties of the composite are evaluated for periodic regular packing and random packing using the homogenization approach for investigating the influence of unified orientation and random orientation of the hexagonal fibers on the overall elastic properties of the fiber-reinforced composites. The numerical results are verified by comparing with other available results.

Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
P. Rupnowski ◽  
M. Gentz ◽  
J. K. Sutter ◽  
M. Kumosa

In this work, a methodology has been presented for the evaluation of stiffness properties and temperature–dependent coefficients of thermal expansion of continuous fibres from the macroscopic properties of either unidirectional or woven composites. The methodology was used to determine the stiffness and thermal properties of T650–35 graphite fibres from the macroscopic input data of unidirectional and woven composites based on the same fibres embedded in a PMR–15 polyimide matrix. In the first part of the analysis, the fibre properties were determined directly from the unidirectional composite macro data using the inversed Eshelby–Mori–Tanaka approach. Subsequently, certain fibre properties were additionally evaluated indirectly from the woven composite, using the finite–element method and the concept of a representative unit cell. It has been shown that the temperature–dependent coefficients of thermal expansion of the fibres can be estimated from the unidirectional composite macro data with significantly smaller errors than in the case of the elastic properties. It has also been shown that the errors in the evaluation of the elastic properties of the fibres from the macro unidirectional composite data could be significantly reduced if the fibres were placed in a stiff matrix material: much stiffer than the polyimide resin. The longitudinal and transverse coefficients of thermal expansions and the shear modulus of the T650–35 fibres determined from the unidirectional composite analysis were successfully verified by investigating the woven composite.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lukasz Madej ◽  
Adam Legwand ◽  
Mohan Setty ◽  
Mateusz Mojzeszko ◽  
Konrad Perzyński ◽  
...  

AbstractHerein, we evaluate the nanoindentation test capabilities in the determination of flow stress characteristics of the matrix material in porous sinters. The Distaloy AB sample with 15% porosity after the sintering operation is selected as a case study for the investigation. 2D and 3D imaging techniques are employed first to highlight difficulties in identifying reliable nano hardness measurement zones for further properties evaluation. Then, nanoindentation test results are acquired with Berkovich tip pressed under various loads at different locations in the sample. Systematic indentations in the quartz sample are used as a cleaning procedure to minimize the effect of the possible build-up around the indenter tip. The representative indentation load range is selected based on the extracted material characteristics. With that, the stress–strain response of the sinter matrix material is identified. The reliability of the determined flow stress curve is confirmed with the use of conical nanoindentation measurement results and finite element simulations. Obtained results show that it is possible to calculate reliable flow stress characteristics of the matrix in the porous samples, with the assumption that experiments under various loading conditions and from various locations in the matrix are performed. It is also pointed out that various indentation loads should be used to eliminate the influence of the pile-up or scale effects that affect the overall material response.


MRS Advances ◽  
2018 ◽  
Vol 3 (37) ◽  
pp. 2159-2168
Author(s):  
Rehema Ndeda ◽  
S. E. M Sebusang ◽  
R. Marumo ◽  
Erich O. Ogur

ABSTRACTMacroscopic strength of the rock depends on the behavior of the micro constituents, that is, the minerals, pores and crack profile. It is important to determine the effect of these constituents on the overall behavior of the rock. This study seeks to estimate the effective elastic properties of granite using the finite element method. A representative volume element (RVE) of suitable size with spherical inclusions of different distribution is subjected to loading and the effective elastic properties determined. The results are compared to those obtained from analytical methods. The elastic properties are obtained in both the axial and transverse direction to account for anisotropy. It is observed that there is congruence in the results obtained both analytically and numerically. The method of periodic microstructures exhibits close agreement with the numerical results.


2000 ◽  
Vol 123 (4) ◽  
pp. 409-416 ◽  
Author(s):  
W. Y. Chien ◽  
J. Pan ◽  
S. C. Tang

The influence of plastic anisotropy on the plastic behavior of porous ductile materials is investigated by a three-dimensional finite element analysis. A unit cell of cube containing a spherical void is modeled. The Hill quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The matrix material is first assumed to be elastic perfectly plastic. Macroscopically uniform displacements are applied to the faces of the cube. The finite element computational results are compared with those based on the closed-form anisotropic Gurson yield criterion suggested in Liao et al. 1997, “Approximate Yield Criteria for Anisotropic Porous Ductile Sheet Metals,” Mech. Mater., pp. 213–226. Three fitting parameters are suggested for the closed-form yield criterion to fit the results based on the modified yield criterion to those of finite element computations. When the strain hardening of the matrix is considered, the computational results of the macroscopic stress-strain behavior are in agreement with those based on the modified anisotropic Gurson’s yield criterion under uniaxial and equal biaxial tensile loading conditions.


2015 ◽  
Vol 825-826 ◽  
pp. 822-829 ◽  
Author(s):  
Dino Magagnato ◽  
Frank Henning

The resin transfer molding (RTM) offers great conditions for mass production of fiber reinforced plastics. In this process, preformed fiber textiles are infiltrated with matrix material (for example: epoxy resin). During the infiltration, the matrix material starts a curing process until the complete consolidation. After the de-molding and a short post-processing step, the final part is ready to use. To reduce the cycle time for the RTM manufacturing, it is necessary to model and predict the flow behavior of the matrix material in a realistic way. An important parameter is the preform permeability, which characterizes the flow resistance of fibers against the flowing matrix material.In this study a new measurement setup is presented, which is able to determine the permeability directly during the manufacturing process, with integrated pressure and temperature sensors. This approach has many advantages against conventional measurement setups, that try to recreate the RTM process with a simple replication. With these replicas, it is only possible to simulate low flow velocities and pressures. Dynamic effects that occur at higher velocities cannot be regarded. Furthermore, the new setup has the advantage that measurement artifacts, like capillarity, have a lower impact. In addition to that, the infiltration can be done with a constant viscosity test fluid as well as with reactive matrix material. Thus, it allows further determination of the time depending viscosity.


Sign in / Sign up

Export Citation Format

Share Document