scholarly journals A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production

2017 ◽  
Vol 6 ◽  
Author(s):  
Ryusei Uchio ◽  
Yohei Higashi ◽  
Yusuke Kohama ◽  
Kengo Kawasaki ◽  
Takashi Hirao ◽  
...  

AbstractTurmeric (Curcuma longa) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

2018 ◽  
Vol 7 ◽  
Author(s):  
Ryusei Uchio ◽  
Shinji Murosaki ◽  
Hiroshi Ichikawa

AbstractCurcuma longa, also known as turmeric, has long been used as a medicinal herb with various biological effects. A hot water extract of C. longa (WEC) has been reported to show antioxidant and anti-inflammatory activity, but its effect on hepatic inflammation is poorly understood. In the present study, to investigate the effect of WEC on non-alcoholic steatohepatitis, C57BL/6J mice were fed a low-methionine, choline-deficient diet with 0·175 % WEC (WEC group) or without WEC (control group) for 6 or 12 weeks. Although hepatic steatosis was similar in the WEC group and the control group, WEC suppressed the elevation of plasma aspartate aminotransferase and alanine aminotransferase, which are markers of hepatocellular damage. Compared with the control group, the WEC group had higher hepatic levels of reduced glutathione and superoxide dismutase, as well as a lower hepatic level of thiobarbituric acid-reactive substances. WEC also reduced hepatic expression of mRNA for inflammatory factors, including TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, F4/80 and CC motif chemokine receptor 2. Histological examination revealed that WEC suppressed hepatic recruitment of F4/80+ monocytes/macrophages and inhibited hepatic fibrosis. Furthermore, WEC inhibited hepatic expression of mRNA for molecules related to fibrosis, such as transforming growth factor-β, α-smooth muscle actin, type I collagen (α1-chain) and tissue inhibitor of matrix metalloproteinase-1. These findings suggest that dietary intake of WEC prevents the progression of non-alcoholic steatohepatitis by alleviating hepatic oxidative stress and inflammation.


2012 ◽  
Vol 22 (5) ◽  
pp. 657-664
Author(s):  
Yong-Byung Chae ◽  
Kyung-Tae Chung ◽  
Sung-Goo Kim ◽  
Byung-Hong Yoo ◽  
Moon-Moo Kim

2018 ◽  
Vol 73 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Tomoaki Ishida ◽  
Michiro Iizuka ◽  
Yanglan Ou ◽  
Shumpei Morisawa ◽  
Ayumu Hirata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document