scholarly journals Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries

2016 ◽  
Vol 62 (235) ◽  
pp. 905-911 ◽  
Author(s):  
SAM ROYSTON ◽  
G. HILMAR GUDMUNDSSON

ABSTRACTThe dominant mass-loss process on the Antarctic Peninsula has been ice-shelf collapse, including the Larsen A Ice Shelf in early 1995. Following this collapse, there was rapid speed up and thinning of its tributary glaciers. We model the impact of this ice-shelf collapse on upstream tributaries, and compare with observations using new datasets of surface velocity and ice thickness. Using a two-horizontal-dimension shallow shelf approximation model, we are able to replicate the observed large increase in surface velocity that occurred within Drygalski Glacier, Antarctic Peninsula. The model results show an instantaneous twofold increase in flux across the grounding line, caused solely from the reduction in backstress through ice shelf removal. This demonstrates the importance of ice-shelf buttressing for flow upstream of the grounding line and highlights the need to explicitly include lateral stresses when modelling real-world settings. We hypothesise that further increases in velocity and flux observed since the ice-shelf collapse result from transient mass redistribution effects. Reproducing these effects poses the next, more stringent test of glacier and ice-sheet modelling studies.

2018 ◽  
Vol 12 (4) ◽  
pp. 1347-1365 ◽  
Author(s):  
Peter Friedl ◽  
Thorsten C. Seehaus ◽  
Anja Wendt ◽  
Matthias H. Braun ◽  
Kathrin Höppner

Abstract. The Antarctic Peninsula is one of the world's regions most affected by climate change. Several ice shelves have retreated, thinned or completely disintegrated during recent decades, leading to acceleration and increased calving of their tributary glaciers. Wordie Ice Shelf, located in Marguerite Bay at the south-western side of the Antarctic Peninsula, completely disintegrated in a series of events between the 1960s and the late 1990s. We investigate the long-term dynamics (1994–2016) of Fleming Glacier after the disintegration of Wordie Ice Shelf by analysing various multi-sensor remote sensing data sets. We present a dense time series of synthetic aperture radar (SAR) surface velocities that reveals a rapid acceleration of Fleming Glacier in 2008 and a phase of further gradual acceleration and upstream propagation of high velocities in 2010–2011.The timing in acceleration correlates with strong upwelling events of warm circumpolar deep water (CDW) into Wordie Bay, most likely leading to increased submarine melt. This, together with continuous dynamic thinning and a deep subglacial trough with a retrograde bed slope close to the terminus probably, has induced unpinning of the glacier tongue in 2008 and gradual grounding line retreat between 2010 and 2011. Our data suggest that the glacier's grounding line had retreated by ∼ 6–9 km between 1996 and 2011, which caused ∼ 56 km2 of the glacier tongue to go afloat. The resulting reduction in buttressing explains a median speedup of ∼ 1.3 m d−1 (∼ 27 %) between 2008 and 2011, which we observed along a centre line extending between the grounding line in 1996 and ∼ 16 km upstream. Current median ice thinning rates (2011–2014) along profiles in areas below 1000 m altitude range between ∼ 2.6 to 3.2 m a−1 and are ∼ 70 % higher than between 2004 and 2008. Our study shows that Fleming Glacier is far away from approaching a new equilibrium and that the glacier dynamics are not primarily controlled by the loss of the former ice shelf anymore. Currently, the tongue of Fleming Glacier is grounded in a zone of bedrock elevation between ∼ −400 and −500 m. However, about 3–4 km upstream modelled bedrock topography indicates a retrograde bed which transitions into a deep trough of up to ∼ −1100 m at ∼ 10 km upstream. Hence, this endangers upstream ice masses, which can significantly increase the contribution of Fleming Glacier to sea level rise in the future.


2018 ◽  
Author(s):  
Johannes Feldmann ◽  
Ronja Reese ◽  
Ricarda Winkelmann ◽  
Anders Levermann

Abstract. Surface accumulation and sub-ice-shelf melting are key drivers for the flow dynamics of the Antarctic Ice Sheet and are most likely to change under future warming which leads to 1) higher snowfall and 2) stronger melting below ice shelves. Here we carry out conceptual simulations in which an equilibrium ice-sheet-shelf system is perturbed such that the increased sub-shelf melting is compensated by enhanced snowfall. Although the net surface mass balance of the whole system remains unchanged, the redistribution of mass leads to a dynamic response of the ice sheet due to changes in ice thickness, surface slope, ice-shelf backstress and ice discharge. In particular, we show that such forcing can lead to the counter-intuitive situation of a retreating ice sheet which gains mass, thus having a negative sea-level contribution but smaller ice-sheet extent. The ice-sheet evolution and the corresponding steady states are investigated varying relevant parameters that affect ice properties and bed geometry as well as for different magnitudes of mass redistribution. Furthermore, the ice-sheet response is analyzed with respect to the pattern of applied melting, i.e., the area over which melting is distributed and the location where it is applied. We find throughout the ensemble of simulations that after two decades, melting at the lateral ice-shelf margins induces more ice-shelf thinning, resulting in stronger grounding line retreat and transient ice discharge compared to melting adjacent to the central grounding-line section. Analyzing changes in ice-shelf backstress with respect to changes in the ice-shelf length and mean thickness, respectively, we show that a thickness change has up to four times more influence on the backstress of the ice shelf than a length change.


2017 ◽  
Author(s):  
Peter Friedl ◽  
Thorsten C. Seehaus ◽  
Anja Wendt ◽  
Matthias H. Braun ◽  
Kathrin Höppner

Abstract. The Antarctic Peninsula is one of the world`s most affected regions by Climate Change. Several ice shelves retreated, thinned or completely disintegrated during recent decades, leading to acceleration and increased calving of their tributary glaciers. Wordie Ice Shelf, located at the south-western side of the Antarctic Peninsula, completely disintegrated in a series of events between the early 1970s and the late 1990s. We investigate the long-term response (1994–2016) of Fleming Glacier after the disintegration of Wordie Ice Shelf by analysing various multi-sensor remote sensing datasets. Our analysis reveals that after two decades of accelerated glacier flow and dynamic thinning the glacier tongue partially ungrounded between January and March 2008. From 2010 to 2011 a further phase of gradual grounding line recession was observed. In total, the retreat of the grounding line between 2008 and 2014 amounted to ~ 6–9 km and caused ~ 68 km2 of the glacier tongue to go afloat. We attribute this to continuous dynamic thinning and pronounced basal melt at the grounding line, probably by a south-western Antarctic Peninsula wide oceanic warming. The bedrock topography revealed that a deep subglacial trough facilitated the grounding line retreat. In response to the ungrounding of the Fleming Glacier tongue we observed an upstream propagation of the acceleration of surface velocities and corresponding to a median speedup along the glacier's centreline of ~ 1.4 m d−1 (~ 29 %) between 2007 and 2011. The propagation of high velocities has not yet affected regions far upstream (~ 50 km) of the glacier. Current ice thinning rates (2011–2014) in areas below 1000 m altitude range between ~ 2.6 to 3.1 m a−1 and are 60–70 % higher than between 2004 and 2008. Our study shows that Fleming Glacier is far away from approaching a new equilibrium and that the glacier dynamics are not primarily controlled by the loss of the ice shelf anymore. Currently, the Fleming Glacier tongue is grounded in a zone of bedrock elevation of ~ −400 m, however, about 3–4 km upstream modelled bedrock topography indicates a retrograde bed which transitions into a deep trough of up to −1000 m at ~ 10 km upstream. Hence, this endangers much larger ice masses in the future and a huge potential for an increase in sea level rise contribution.


2021 ◽  
Author(s):  
Tom Holt ◽  
Neil Glasser

<p>Over the latter half of the 20<sup>th</sup> Century and beginning of the 21<sup>st</sup> Century, ice shelves around the Antarctic Peninsula have been losing mass at an accelerating rate, attributable to changes in atmospheric and oceanic conditions. Ice shelves have declined in extent and thickness, and some show signs of structural weakening. Here we investigate the glaciological changes to Bach, Stange and George VI ice shelves that fringe the Southwest Antarctic Peninsula. We used satellite imagery from 2009/10 to 2019/20 (Landsat, Sentinel and ASTER) to measure areal changes, calculate flow speeds, and quantify structural changes, focusing on open fracture width and length. We reveal a total net loss of 797.5 km<sup>2</sup> from all three ice shelves since 2009/10, though spatial and temporal patterns of ice loss vary at individual ice fronts. Flow speeds have remained largely stable, but notable acceleration was calculated for Bach Ice Shelf, and at the northern and southern extents of George VI Ice Shelf. Open fractures have widened and lengthened over the observation periods. We conclude that Stange Ice Shelf is stable, and not under any immediate threat of enhanced recession. Continued ice-mass loss and consequential speed up of George VI South may cause further fracturing and destabilisation in the coming decades. Of more immediate concern are the glaciological changes noted for Bach Ice Shelf and George VI North; significant areas of passive ice have already, or will be soon removed, that could result in enhanced recession within the next decade.</p>


2003 ◽  
Vol 15 (4) ◽  
pp. 503-506 ◽  
Author(s):  
JEFFREY EVANS ◽  
COLM Ó COFAIGH

Semi-continuous, linear accumulations of poorly-sorted debris are present on the surface of the remnant Larsen-A Ice Shelf, Antarctic Peninsula. These accumulations form a complex of debris bands extending parallel to the front of the ice shelf for several kilometres. Landsat imagery shows that the debris bands originated as lateral moraines along the Nordenskjöld Coast. Almost 80% of clasts sampled from these debris accumulations have shape/roundness characteristics consistent with glacier transport in the zone of basal traction. Angular and very angular clasts account for 15% and 22% of clasts in the pebble- and cobble/boulder-sized fractions, respectively, and originated by rockfall from valley/nunatak sides, with subsequent passive glacier transportation. Lithological analysis indicates that the debris is derived locally from the Nordenskjöld Coast, Cape Fairweather region and interior of the Antarctic Peninsula. Episodic melt-out and resedimentation of this debris from the front of the ice shelf would deliver pulses of coarse-grained sediment to the sea floor. Therefore, coarse-grained debris can also be released along the calving margin of small polar ice shelves fringing mountainous terrain, and could potentially be confused with sediment deposited at the grounding line of Antarctic ice-shelves. Sedimentological criteria to differentiate between these environments are proposed in this paper.


2021 ◽  
Author(s):  
Tom Mitcham ◽  
G. Hilmar Gudmundsson ◽  
Jonathan L. Bamber

Abstract. The Antarctic Peninsula has seen rapid and widespread changes in the extent of its ice shelves in recent decades, including the collapse of the Larsen A and B ice shelves in 1995 and 2002, respectively. In 2017 the Larsen C ice shelf (LCIS) lost around 10 % of its area by calving one of the largest icebergs ever recorded (A68). This has raised questions about the structural integrity of the shelf and the impact of any changes in its extent on the flow of its tributary glaciers. In this work, we used an ice flow model to study the instantaneous impact of changes in the thickness and extent of the LCIS on ice dynamics, and in particular on changes in the grounding line flux (GLF). We initialised the model to a pre-A68 calving state, and first replicated the calving of the A68 iceberg. We found that there was a limited impact on upstream flow – with speeds increasing by less than 10 % across almost all of the shelf – and a 0.5 % increase in GLF. This result is supported by observations of ice velocity made before and after the calving event. We then perturbed the ice-shelf geometry through idealised calving and thinning experiments of increasing magnitude. We found that significant changes to the geometry of the ice shelf, through both calving and thinning, resulted in limited changes in GLF. For example, to produce a doubling of GLF from calving, the new calving front needed to be moved to 5 km from the grounding line, removing almost the entire ice shelf. For thinning, over 200 m of the ice-shelf thickness had to be removed across the whole shelf to produce a doubling of GLF. Calculating the increase in GLF (607 %) after removing the entire ice shelf allowed us to quantify the total amount of buttressing provided by the LCIS. From this, we identified that the region of the ice shelf in the first 5 km downstream of the grounding line provided over 80 % of the buttressing capacity of the shelf. This is due to the large resistive stresses generated in the narrow, local embayments downstream of the largest tributary glaciers.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 731
Author(s):  
Shelley MacDonell ◽  
Francisco Fernandoy ◽  
Paula Villar ◽  
Arno Hammann

In recent decades, several large ice shelves in the Antarctic Peninsula region have experienced significant ice loss, likely driven by a combination of oceanic, atmospheric and hydrological processes. All three areas need further research, however, in the case of the role of liquid water the first concern is to address the paucity of field measurements. Despite this shortage of field observations, several authors have proposed the existence of firn aquifers on Antarctic ice shelves, however little is known about their distribution, formation, extension and role in ice shelf mechanics. In this study we present the discovery of saturated firn at three drill sites on the Müller Ice Shelf (67°14′ S; 66°52′ W), which leads us to conclude that either a large contiguous or several disconnected smaller firn aquifers exist on this ice shelf. From the stratigraphic analysis of three short firn cores extracted during February 2019 we describe a new classification system to identify the structures and morphological signatures of refrozen meltwater, identify evidence of superficial meltwater percolation, and use this information to propose a conceptual model of firn aquifer development on the Müller Ice Shelf. The detailed stratigraphic analysis of the sampled cores will provide an invaluable baseline for modelling studies.


2021 ◽  
pp. 1-27
Author(s):  
H. Jay Zwally ◽  
John W. Robbins ◽  
Scott B. Luthcke ◽  
Bryant D. Loomis ◽  
Frédérique Rémy

Abstract GRACE and ICESat Antarctic mass-balance differences are resolved utilizing their dependencies on corrections for changes in mass and volume of the same underlying mantle material forced by ice-loading changes. Modeled gravimetry corrections are 5.22 times altimetry corrections over East Antarctica (EA) and 4.51 times over West Antarctica (WA), with inferred mantle densities 4.75 and 4.11 g cm−3. Derived sensitivities (Sg, Sa) to bedrock motion enable calculation of motion (δB0) needed to equalize GRACE and ICESat mass changes during 2003–08. For EA, δB0 is −2.2 mm a−1 subsidence with mass matching at 150 Gt a−1, inland WA is −3.5 mm a−1 at 66 Gt a−1, and coastal WA is only −0.35 mm a−1 at −95 Gt a−1. WA subsidence is attributed to low mantle viscosity with faster responses to post-LGM deglaciation and to ice growth during Holocene grounding-line readvance. EA subsidence is attributed to Holocene dynamic thickening. With Antarctic Peninsula loss of −26 Gt a−1, the Antarctic total gain is 95 ± 25 Gt a−1 during 2003–08, compared to 144 ± 61 Gt a−1 from ERS1/2 during 1992–2001. Beginning in 2009, large increases in coastal WA dynamic losses overcame long-term EA and inland WA gains bringing Antarctica close to balance at −12 ± 64 Gt a−1 by 2012–16.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


Sign in / Sign up

Export Citation Format

Share Document