scholarly journals Comparison of turbulent structures and energy fluxes over exposed and debris-covered glacier ice

2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.

2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2006 ◽  
Vol 7 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma ◽  
Wayne R. Rouse

Abstract In this study, the authors have performed the variational computations for surface sensible heat fluxes over a large northern lake using observed wind, temperature gradient, and moisture gradient. In contrast with the conventional (Monin–Obukhov similarity theory) MOST-based flux-gradient method, the variational approach sufficiently utilizes observational meteorological conditions over the lake, where the conventional flux-gradient method performs poorly. Verifications using direct eddy-correlation measurements over Great Slave Lake, the fifth largest lake in North America in terms of surface area, during the open water period of 1999 demonstrate that the variational method yields good agreements between the computed and the measured sensible heat fluxes. It is also demonstrated that the variational method is more accurate than the flux-gradient method in computations of sensible heat flux across the air–water interface.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 299
Author(s):  
Noman Ali Buttar ◽  
Hu Yongguang ◽  
Josef Tanny ◽  
M Waqar Akram ◽  
Abdul Shabbir

Precise estimation of surface-atmosphere exchange is a major challenge in micrometeorology. Previous literature presented the eddy covariance (EC) as the most reliable method for the measurements of such fluxes. Nevertheless, the EC technique is quite expensive and complex, hence other simpler methods are sought. One of these methods is Flux-Variance (FV). The FV method estimates sensible heat flux (H) using high frequency (~10Hz) air temperature measurements by a fine wire thermocouple. Additional measurements of net radiation (Rn) and soil heat flux (G) allow the derivation of latent heat flux (LE) as the residual of the energy balance equation. In this study, the Flux Variance method was investigated, and the results were compared against eddy covariance measurements. The specific goal of the present study was to assess the performance of the FV method for the estimation of surface fluxes along a variable fetch. Experiment was carried out in a tea garden; an EC system measured latent and sensible heat fluxes and five fine-wire thermocouples were installed towards the wind dominant direction at different distances (fetch) of TC1 = 170 m, TC2 = 165 m, TC3 = 160 m, TC4 = 155 m and TC5 = 150 m from the field edge. Footprint analysis was employed to examine the effect of temperature measurement position on the ratio between 90% footprint and measurement height. Results showed a good agreement between FV and EC measurements of sensible heat flux, with all regression coefficients (R2) larger than 0.6; the sensor at 170 m (TC1), nearest to the EC system, had highest R2 = 0.86 and lowest root mean square error (RMSE = 25 Wm−2). The estimation of LE at TC1 was also in best agreement with eddy covariance, with the highest R2 = 0.90. The FV similarity constant varied along the fetch within the range 2.2–2.4.


2021 ◽  
Author(s):  
Maoshan Li ◽  
Lingzhi Wang ◽  
Wei Fu ◽  
Ming Gong ◽  
Na Chang

<p><strong><sup> </sup></strong><sup>Different underlying surfaces have differing diversities, complex compositions and uneven distributions and contribute to diverse and complex land surfaces. As the main input factor for atmospheric energy, the surface greatly affects the various interactions between the ground and the atmosphere and even plays a key role in local areas on the Tibetan Plateau. The characteristics of the atmospheric boundary layer structure of the plateau and the land-atmosphere interaction under the control of different wind fields in the south branch of the westerly wind and the plateau monsoon are discussed. Results show that the height of the atmospheric boundary layer at each station under the westerly south branch wind field is higher than that under the summer monsoon wind field. The height of the convective boundary layers of Mount Everest, Nyingchi, Nagqu and Shiquan River in the southwest wind field are 3250 m, 2250 m, 2760 m and 3500 m. while the height of the convective boundary layers of Mount Everest, Nyingchi, Nagqu and Shiquan River under the plateau monsoon field are 2000 m, 2100 m, 1650 m and 2000 m. The specific humidity of the surface layer at all site is larger on July than it on other months. The specific humidity of the surface layer in Linzhi area is larger than that of the other three regions, and it reaches 12.88 g·kg-1 at the maximum. The wind direction on Mount Everest over 1200 m is dominated by westerly winds in May and October. The wind direction on Nyingchi above 1500 m is dominated by westerly winds in May and October, and in July, winds above 1200 m is dominated by southerly winds. The wind direction of Shiquan River in May and October is dominated by west-southwest wind, and the wind direction of Shiquan River in July is dominated by west-northwest wind. Secondly, variation characteristics of surface fluxes were analyzed by using the eddy covariance observations from four stations of Pailong(entrance of Canyon), Danka (middle of Canyon), Kabu (end of Canyon) , and Motuo (end of Canyon) in the southeastern gorge area of Tibet. The changing trend of monthly averaged daily sensible heat flux at Kabu station is fluctuating. Sensible heat flux and latent heat flux at Motuo station have the same variation characteristics. Latent heat fluxes increase first and then decrease at all four stations. Seasonal variations of soil heat flux are obvious, characterizing positive values in spring and summer and negative values in autumn and winter. The diurnal variation intensity of net radiation flux is summer>spring>autumn>winter.   Energy closure rates of Danka, Pailong, Motuo, and Kabu stations are 70.86%, 68.91%, 69.29%, and 67.23%, respectively. Latent heat fluxes and soil heat fluxes increase, and sensible heat fluxes decrease as increasing precipitation at the four stations. The sensible heat flux and soil heat flux respond synchronously to precipitation changes, and the changes in latent heat have a significant lag in response to precipitation changes.</sup></p>


2019 ◽  
Vol 11 (24) ◽  
pp. 2899
Author(s):  
Nan Ge ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Meilin Cheng ◽  
Xian Wang ◽  
...  

Land surface heat fluxes consist of the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. The estimation of these fluxes is essential to the study of energy transfer in land–atmosphere systems. In this paper, Landsat 7 ETM+ SLC-on data were applied to estimate the land surface heat fluxes on the northern Tibetan Plateau using the SEBS (surface energy balance system) model, in combination with the calculation of field measurements at CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau) automatic weather stations based on the combinatory method (CM) for comparison. The root mean square errors between the satellite estimations and the CM calculations for the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux were 49.2 W/m2, 46.3 W/m2, 68.2 W/m2, and 54.9 W/m2, respectively. The results reveal that land surface heat fluxes all present significant seasonal variability. Apart from the sensible heat flux, the satellite-estimated net radiation flux, soil heat flux, and latent heat flux exhibited a trend of summer > spring > autumn > winter. In summer, spring, autumn, and winter, respectively, the median values of the net radiation flux (631.8 W/m2, 583.0 W/m2, 404.4 W/m2, 314.3 W/m2), soil heat flux (40.9 W/m2, 37.9 W/m2, 26.1 W/m2, 20.5 W/m2), sensible heat flux (252.7 W/m2, 219.5 W/m2, 221.4 W/m2, 204.8 W/m2), and latent heat flux (320.1 W/m2, 298.3 W/m2, 142.3 W/m2, 75.5 W/m2) exhibited distinct seasonal diversity. From November to April, the in situ sensible heat flux is higher than the latent heat flux; the opposite is true between June and September, leaving May and October as transitional months. For water bodies, alpine meadows and other main underlying surface types, sensible and latent heat flux generally present contrasting and complementary spatial distributions. Due to the 15–60 m resolution of the Landsat 7 ETM+ data, the distribution of land surface heat fluxes can be used as an indicator of complex underlying surface types over the northern Tibetan Plateau.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 322
Author(s):  
Francesc Castellví ◽  
Pedro Gavilán

Often in agrometeorology the instrumentation required to estimate turbulent surface fluxes must be installed at sites where fetch is not sufficient for a sector of wind directions. For different integrated flux-footprints (IFFP) thresholds and taking as a reference the half-hourly latent heat fluxes (LE) measured with a large weighing lysimeter (LELys), the eddy covariance (EC) method and two methods based on surface renewal (SR) analysis to estimate LE were tested over short fescue grass. One method combined SR with the flux-gradient (profile) relationship, SR-P method, and the other with the dissipation method, SR-D method. When LE was estimated using traces of air moisture, good performances were obtained using the EC and the SR-P methods for samples with IFFP higher than 85%. However, the closest LE estimates were obtained using the residual method. For IFFP higher than 50%, the residual method combined with the sensible heat flux estimates determined using the SR-P method performed close to LELys and using the SR-D method good estimates were obtained for accumulated LELys. To estimate the sensible heat flux, the SR-D method can be recommended for day-to-day use by farmers because it is friendly and affordable.


2009 ◽  
Vol 6 (1) ◽  
pp. 241-290 ◽  
Author(s):  
E. Nemitz ◽  
K. J. Hargreaves ◽  
A. Neftel ◽  
B. Loubet ◽  
P. Cellier ◽  
...  

Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. While the dataset averaged over the different instruments fails to close the energy budget by 30%, if the largest turbulent fluxes are considered, near perfect energy closure can be achieved, suggesting that most techniques underestimate λE in particular. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.


2020 ◽  
Author(s):  
E. Hugo Berbery ◽  
Eli Dennis

<p>The land surface is inextricably linked to the atmospheric circulation as it dictates the location and strength of land surface-atmosphere (LA) coupling mechanisms. In this context, soil hydraulic properties are critical to estimate sub-surface processes and fluxes at the surface.  In most numerical weather and climate models, those properties are assigned through maps of soil texture complemented with look-up tables.  Then, the hydraulic properties are used in a large variety of process parameterizations within the models.  In this study, we investigate the sensitivity of the simulated regional climate to changes in the prescribed soil maps in the WRF/CLM4 modeling suite.  Comparison of two widely used soil texture databases, the USGS State Soil Geographic Database (STATSGO) and Beijing Normal University’s soil texture database (GSDE), over the United States and Central America reveals that only 32% of soil texture classifications are in common. Further, the differences are not random but tend to depict small-to-large spatial patterns with a preponderance of either finer or coarser grains. Over North America, the US Great Plains have finer grains in GSDE than in STATSGO, while the opposite is true over Central Mexico.</p><p> </p><p>Seasonal simulations were carried out to assess the changes in the soil-water system that result from changing the soil types (GSDE vs. STATSGO) and their corresponding hydraulic properties. Wherever GSDE has finer grains than STATSGO (e.g., over the US Great Plains), the soil will retain water more strongly as evidenced by smaller latent heat fluxes and larger sensible heat flux. On the other hand, areas of coarser grains in GSDE (e.g., over central Mexico) exhibit an increase in latent heat fluxes and a corresponding decrease in sensible heat flux. Regions with an increase/decrease in latent heat flux have a corresponding increase/decrease in the 2-m moisture content. Similar relations are obtained between sensible heat flux and 2-m temperature. These changes also affect the atmospheric column, which responds with an increase/decrease of temperature and height of the planetary boundary layer. Changes in the vertical structure induce changes in the vertical instability and winds. Interestingly, the chain of modifications resulting from soil texture changes impact the moisture fluxes, and more generally, the atmospheric water budget.</p>


2019 ◽  
Vol 46 (3) ◽  
pp. 07
Author(s):  
Leilane Gomes Duarte ◽  
Kelly Souza Romera ◽  
Marlus Sabino ◽  
Leone Francisco Amorim Curado ◽  
Rafael Da Silva Palácios ◽  
...  

This paper aimed to analyze the dynamics of the energy budget components: latent heat flux (LE), sensible heat flux (H) and soil heat flux (G), in the Mato Grosso Pantanal. The estimates of LE, H, and G were obtained by the Bowen ratio methods, using data from the micrometeorological tower located in the Baía das Pedras Park of SESC-Pantanal Ecological Resort, for the years 2011 to 2013. The normality of the variables Rn, LE, H and G, were tested by Kolmogorov-Smirnov test at 5% significance, and the seasonal differences of the fluxes were verified by the KruskalWallis test, α = 0.05. LE and H data from the remote sensing products MATMNXFLX and FLDAS_NOAH of the MERRA model was also acquired, and their comparison with the tower data was performed by the statistics of Spearman correlation (r), Mean Absolute Error (MAE), Root Mean Squared Erro (RMSE), bias, and Willmott's Concordance Index (d). It was observed that most of the available energy is used for evapotranspiration (latent heat), followed by sensible heat and soil heat flux. In the rainy season there is an increase in the partition of LE and G and reduction of H. Only the estimates of LE of MATMNXFLX and FLDAS_NOAH products correlate with the data observed in the meteorological tower. It is concluded that the energy partitions have a seasonal behavior and that the MATMNXFLX and FLDAS_NOAH products, after being calibrated, can be used to estimate LE in the Mato Grosso Pantanal.


Sign in / Sign up

Export Citation Format

Share Document