scholarly journals Phase-sensitive radar as a tool for measuring firn compaction

2021 ◽  
pp. 1-14
Author(s):  
Elizabeth Case ◽  
Jonathan Kingslake

Abstract Firn compaction models inform mass-balance estimates and paleo-climate reconstructions, but current models introduce key uncertainties. For example, models disagree on the dependence of density and compaction on accumulation rate. Observations of compaction to test these models are rare, partly because in situ methods for measuring englacial strain are time-consuming and expensive. Moreover, shallow measurements may confound strain due to compaction with strain due to ice-sheet flow. We show that phase-sensitive radio-echo sounder (pRES) systems, typically deployed to measure sub-shelf melting or ice-sheet deformation, can be used to measure firn compaction and test firn models. We present two complementary methods for extracting compaction information from pRES data, along with a method for comparing compaction models to pRES observations. The methods make different assumptions about the density structure and vary in their need for independent density measurements. Compaction profiles computed from pRES data collected on three ice rises in West Antarctica are largely consistent with measured densities and a physics-based model. With their minimal logistic requirements, new pRES systems, such as autonomous pRES, could be inexpensively deployed to monitor firn compaction more widely. Existing phase-sensitive radar data may contain compaction information even when surveys targeted other processes.

Geology ◽  
2020 ◽  
Vol 48 (3) ◽  
pp. 268-272 ◽  
Author(s):  
N. Holschuh ◽  
K. Christianson ◽  
J. Paden ◽  
R.B. Alley ◽  
S. Anandakrishnan

Abstract Ice sheets reshape Earth’s surface. Maps of the landscape formed by past ice sheets are our best tool for reconstructing historic ice sheet behavior. But models of glacier erosion and deposition that explain mapped features are relatively untested, and without observations of landforms developing in situ, postglacial landscapes can provide only qualitative insight into past ice sheet conditions. Here we present the first swath radar data collected in Antarctica, demonstrating the ability of swath radar technology to map the subglacial environment of Thwaites Glacier (West Antarctica) at comparable resolutions to digital elevation models of deglaciated terrain. Incompatibility between measured bedform orientation and predicted subglacial water pathways indicates that ice, not water, is the primary actor in initiating bedform development at Thwaites Glacier. These data show no clear relationship between morphology and glacier speed, a weak relationship between morphology and basal shear stress, and highlight a likely role for preexisting geology in glacial bedform shape.


2019 ◽  
Vol 116 (38) ◽  
pp. 18867-18873 ◽  
Author(s):  
Dustin M. Schroeder ◽  
Julian A. Dowdeswell ◽  
Martin J. Siegert ◽  
Robert G. Bingham ◽  
Winnie Chu ◽  
...  

Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.


2005 ◽  
Vol 41 ◽  
pp. 47-51 ◽  
Author(s):  
Robert W. Jacobel ◽  
Brian C. Welch

AbstractDeep radar soundings as part of the International Trans-Antarctic Scientific Expedition (US-ITASE) traverses in West Antarctica have revealed a bright internal reflector that we have imaged throughout widespread locations across the ice sheet. The layer is seen in traverses emanating from Byrd Station in four directions and has been traced continuously for distances of 535km toward the Weddell Sea drainage, 500km toward South Pole, 150km toward the Executive Committee Range and 160km toward Kamb Ice Stream (former Ice Stream C). The approximate area encompassed by the layer identified in these studies is 250 000km2. If the layer identification can also be extended to Siple Dome where we have additional radar soundings (Jacobel and others, 2000), the approximate area covered would increase by 50%. In many locations echo strength from the layer rivals the bed echo in amplitude even though it generally lies at a depth greater than half the ice thickness. At Byrd Station, where the layer depth is 1260 m, an age of ~17.5 kyr BP has been assigned based on the Blunier and Brook (2001) chronology. Hammer and others (1997) note that the acidity at this depth is >20 times the amplitude of any other part of the core. The depiction of this strong and widespread dated isochrone provides a unique time marker for much of the ice in West Antarctica. We apply a layer-tracing technique to infer the depth–time scale at the inland West Antarctic ice sheet divide and use this in a simple model to estimate the average accumulation rate.


2002 ◽  
Vol 34 ◽  
pp. 209-216 ◽  
Author(s):  
B. E. Smith ◽  
N. E. Lord ◽  
C. R. Bentley

AbstractIn the 1997/98 austral summer field season, we conducted a ground-penetrating radar survey on the northern shear margin of Ice Stream C, West Antarctica. The radar data were used to identify features near the surface of the ice, including internal layers and buried crevasses. The survey was intended to determine the variation in the age of buried crevasses along the ice stream. A procedure was developed by which the accumulation rate and the age of buried crevasses can be estimated based on radar records, firn-core measurements and the assumption that the crevasses were once open to the surface. With this method we were able to determine the age of buried crevasses with a standard error of 15–20%. We discuss our new results in conjunction with those of Retzlaff and Bentley (1993) on the southern margin of the ice stream. Typical crevasse ages were found to range from 120 to 200 years, although crevasses in a few areas were significantly younger. The youngest crevasses are at the extreme upstream end of the survey, but the next youngest were found midway along the ice stream. Crevasses upstream and downstream are older, with ages 40–80 years greater than those in the middle. Crevasses on the northern shear margin of tributary C2 were 30–50 years older than those on the southern margin. These patterns of crevassing suggest that variability in shear margin response to changes in ice-stream flow played an essential role in determining the time at which crevassing became inactive.


2015 ◽  
Vol 56 (70) ◽  
pp. 167-174 ◽  
Author(s):  
S.R.M. Ligtenberg ◽  
B. Medley ◽  
M.R. Van Den Broeke ◽  
P. Kuipers Munneke

AbstractThe thickness and density of the Antarctic firn layer vary considerably in time and space, thereby contributing to ice-sheet volume and mass changes. Distinguishing between these mass and volume changes is important for ice-sheet mass-balance studies. Evolution of firn layer depth and density is often modeled, because direct measurements are scarce. Here we directly compare modeled firn compaction rates with observed rates obtained from repeat-track airborne radar data over a 2 year interval (2009–11) in West Antarctica. Spatially, the observed compaction rates exhibit significant variability, but when averaged to scales comparable to the model resolution (20–50 km), the measurements and model results qualitatively agree. A colder and drier period preceding the 2009 survey led to lower compaction rates during the 2009–10 interval, when compared to 2010–11, which is partly captured by the firn model. Spatially, higher compaction rates are observed and modeled in warmer regions with higher accumulation.


2009 ◽  
Vol 50 (51) ◽  
pp. 57-62 ◽  
Author(s):  
John Woodward ◽  
Edward C. King

AbstractWe present 1 and 100 MHz ground-based radar data from the onset region of Rutford Ice Stream, West Antarctica, which indicate the form and internal structure of isochrones. In the flow-parallel lines, modelled isochrone patterns reproduce the gross pattern of the imaged near-surface layers, assuming steady-state flow velocity from GPS records and the current accumulation rate for the last 200 years. We interpret this as indicating overall stability in flow in the onset region of Rutford Ice Stream throughout this period. However, in the cross-flow lines some local variability in accumulation is seen in areas close to the ice-stream margin where a number of tributaries converge towards the ice-stream onset zone. Episodic surface lowering events are observed followed by rapid fill episodes. The fill events indicate deposition towards the northwest, most likely generated by storm winds, which blow at an oblique angle to ice flow. More problematic is explaining the generation of episodic surface lowering in this area. We speculate this may be due to: changing ice-flow direction in the complex tributary area of the onset zone; a change in basal sediments or sedimentary landforms; a change in basal melt rates or water supply; or episodic lake drainage events in the fjord systems of the Ellsworth Subglacial Highlands. The study highlights the difficulty of assessing flow stability in the complex onset regions of West Antarctic ice streams.


2004 ◽  
Vol 39 ◽  
pp. 20-28 ◽  
Author(s):  
Gino Casassa ◽  
Andrés Rivera ◽  
César Acuña ◽  
Henry Brecher ◽  
Heiner Lange

AbstractPatriot Hills is located at 80˚18’ S, 81˚22’W, at the southernmost end of the Heritage Range, Ellsworth Mountains, West Antarctica. A comparison of glacier elevation data and ice velocities obtained by the differential global positioning system in the period 1996–97 is presented. Ablation/accumulation rates measured at a network of stakes in Horseshoe Valley show average accumulation of 70 kg m–2 a–1 in the central part of the valley, and a maximum ablation of ∼170 kg m–2 a–1 at the edge of the blue-ice area, close to Patriot Hills. Changes in the surface elevation of the glacier measured at 81 stakes in the period 1995–97 show a mean thickening of +0.43±0.42ma–1, which, considering the uncertainties, indicates that the ice sheet around Patriot Hills is in near steady state. Surface velocities, in combination with ice thicknesses obtained by ground-based radio-echo sounding, are used to compute the ice flux across the Horseshoe Valley transect. A total outflow of 0.44 ±0.08km3 a–1 is obtained. Considering a catchment area for Horseshoe Valley of 1087 km2 upstream from the flow transect, and a net accumulation rate of 100 kg m–2 a–1, a total input of 0.11 ±0.04km3 a–1 by snow accumulation is obtained. Accepting a near-equilibrium condition for the ice sheet, the flux difference, i.e. 0.33 km3 a–1, must be supplied by flow from the inland ice sheet through ice cliffs located in mountain gaps in the Heritage Range. If Horseshoe Valley is not in steady state but is thickening, the positive mass balance could be due to increased snow accumulation or enhanced ice flow from the interior of the ice sheet. New data are needed to elucidate this.


2021 ◽  
Author(s):  
Olga Sergienko ◽  
Duncan Wingham

<p>The "marine ice-sheet instability hypothesis", which states that unconfined marine ice sheets are unconditionally unstable on retrograde slopes, was developed under assumptions of negligible bed slopes. Realistic ice sheets, however, flow over beds which topographies have a wide range of bed slopes (for example, Thwaites Glacier in the Amundsen Sea sector, West Antarctica). Reexamining the original model of marine ice sheets proposed by Schoof (2007), and relaxing an assumption of negligible bed slopes, we find that a steady-state ice flux at the grounding line is an implicit function of the grounding-line ice thickness, bed slope and accumulation rate. Depending on the sliding conditions, the magnitudes of the ice flux at the grounding line differ by one-to-three orders of magnitudes from that computed with a power-law expression derived by Schoof (2007) under assumptions of the negligible bed slopes. Non-negligible bed slopes also result in conditions of stability of the grounding line that are significantly more complex than those associated with the "marine ice sheet instability hypothesis". Bed slopes are no longer the sole determinant of whether the grounding line is stable or unstable. We find that the grounding line can be stable on beds with retrograde slopes and unstable on beds with prograde slopes. </p>


2012 ◽  
Vol 58 (210) ◽  
pp. 741-752 ◽  
Author(s):  
Ginny Catania ◽  
Christina Hulbe ◽  
Howard Conway ◽  
T.A. Scambos ◽  
C.F. Raymond

AbstractWe synthesize previously published remote-sensing observations, radar data and model output to obtain a ~1000 year ice flow history for the Siple Coast ice-stream system in West Antarctica to investigate the timing and magnitude of changes in mass flux. The synthesized history shows significant short-term variability in ice-stream shear margin and grounding line position due to internal variability of the coupled system. The chronology highlights the interplay between adjacent ice streams, which implies that the behavior of any individual ice stream should not be examined in isolation. Furthermore, individual events cannot be fully interpreted without an understanding of the broad-scale, long-term variability in the ice sheet. In the context of this millennium-scale history, we interpret the relatively recent stagnation of Kamb Ice Stream (KIS) as just one stage in the thermodynamic cycle of an ice stream in this region. The changes in mass balance that result from the KIS stagnation may thus be viewed as century-scale 'noise' relative to the longer-term trend. Understanding and characterizing this noise is a necessary step before accurate model-based predictions of ice-sheet mass balance for the next century can be made.


2016 ◽  
Vol 59 (1) ◽  
Author(s):  
Shuanggen Jin ◽  
Mosta Abd-Elbaky ◽  
Guping Feng

<p>Accurate estimate of the ice-sheet mass balance in Antarctic is very difficult due to complex ice sheet condition and sparse in situ measurements. In this paper, the low-degree gravity field coefficients of up to degree and order 5 derived from Satellite Laser Ranging (SLR) measurements are used to determine the ice mass variations in Antarctica for the period 1993–2011. Results show that the ice mass is losing with -36±13 Gt/y in Antarctica, -42±11 Gt/y in the West Antarctica and 6±10 Gt/y in the East Antarctica from 1993 to 2011. The ice mass variations from the SLR 5×5 have a good agreement with the GRACE 5×5, GRACE 5×5 (1&amp;2) and GRACE (60×60) for the entire continent since 2003, but degree 5 from SLR is not sufficient to quantify ice losses in West and East Antarctica, respectively. The rate of ice loss in Antarctica is -28±17 Gt/y for 1993-2002 and -55±17 Gt/y for 2003-2011, indicating significant accelerated ice mass losses since 2003. Furthermore, the results from SLR are comparable with GRACE measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document