Water supply systems in Cyrenaica during the Greek and Roman periods: Cyrene in context

2019 ◽  
Vol 50 ◽  
pp. 99-105
Author(s):  
Mohamed Omar M Abdrbba

AbstractThis article investigates water supply systems in Cyrenaica during both the Greek and Roman periods. Beginning with some general information on water supply systems in Cyrenaica's other cities, it goes on to describe aqueducts and water cisterns recorded during the Cyrene Archaeological Surveys (CAS) around Cyrene in 2015 and 2017. The article explains how water was stored and delivered to the city of Cyrene in antiquity and offers a wider discussion on water distribution in Cyrene in the Greek era and how water supply systems developed through time, moving into the Roman period.

Water ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 344 ◽  
Author(s):  
Irene Samora ◽  
Pedro Manso ◽  
Mário Franca ◽  
Anton Schleiss ◽  
Helena Ramos

2020 ◽  
Vol 10 (22) ◽  
pp. 8219
Author(s):  
Andrea Menapace ◽  
Ariele Zanfei ◽  
Manuel Felicetti ◽  
Diego Avesani ◽  
Maurizio Righetti ◽  
...  

Developing data-driven models for bursts detection is currently a demanding challenge for efficient and sustainable management of water supply systems. The main limit in the progress of these models lies in the large amount of accurate data required. The aim is to present a methodology for the generation of reliable data, which are fundamental to train anomaly detection models and set alarms. Thus, the results of the proposed methodology is to provide suitable water consumption data. The presented procedure consists of stochastic modelling of water request and hydraulic pipes bursts simulation to yield suitable synthetic time series of flow rates, for instance, inlet flows of district metered areas and small water supply systems. The water request is obtained through the superimposition of different components, such as the daily, the weekly, and the yearly trends jointly with a random normal distributed component based on the consumption mean and variance, and the number of users aggregation. The resulting request is implemented into the hydraulic model of the distribution system, also embedding background leaks and bursts using a pressure-driven approach with both concentrated and distributed demand schemes. This work seeks to close the gap in the field of synthetic generation of drinking water consumption data, by establishing a proper dedicated methodology that aims to support future water smart grids.


1988 ◽  
Vol 78 (2) ◽  
pp. 317-328 ◽  
Author(s):  
P. H. Langton ◽  
P. S. Cranston ◽  
P. Armitage

AbstractChironomid midges have been known to include parthenogenetic species for over a century. One of these species, Paratanytarsus grimmii (Schneider), cited under several different names here shown to be junior synonyms, has attained some notoriety as a pest. Its occurrence as a supposedly paedogenetic (actually pharate adult parthenogenetic) inhabitant of water distribution systems is discussed and related to its more usual occurrence in a variety of small water bodies including aquaria. New synonymy is proposed and a lectotype designated.


2015 ◽  
Vol 10 (2) ◽  
pp. 214-228 ◽  
Author(s):  
Jos Frijns ◽  
Enrique Cabrera Marchet ◽  
Nelson Carriço ◽  
Dídia Covas ◽  
Antonio J. Monteiro ◽  
...  

There is significant potential for energy recovery through the use of micro-hydropower installations in water supply systems (WSS). To exploit the full potential of hydro energy in balance with the optimal hydraulic performance and water supply service, multi-objective management tools are needed. This paper presents the application of four management tools: (1) an energy audit to evaluate the potential hydro energy in the water pressurised systems of Alcoy; (2) multi-criteria decision-making methods for the selection of the preferred energy-efficient operation of a system with a pump-storage reservoir and hydro-turbines in the Algarve; (3) a numerical dynamic tool for optimal turbine operation in the water distribution of Langhirano; and (4) an urban water optioneering tool to estimate the hydropower potential of the external aqueduct network in Athens. These methods showed that through an integrated approach the WSS can be optimised for both hydraulic performance and hydro energy production.


2013 ◽  
Vol 13 (4) ◽  
pp. 896-905 ◽  
Author(s):  
Ivan Halkijevic ◽  
Zivko Vukovic ◽  
Drazen Vouk

In water supply systems, pressure management in most cases is proven to be the most cost-effective activity related to water loss control. As an advanced method of pressure control, it is possible to use variable frequency drives for centrifugal pump control. Pressure regulation can be performed with constant pressure or with proportional pressure control. The application of proportional pressure control is particularly applicable in water supply systems as the operating pump performance is constantly adapting the pressure to the actual demand. Along with lower leakage losses, it also results in lower energy consumption and the elimination of non-stationary phenomena, thereby extending the pump lifetime. Therefore, the paper presents a theoretical discussion of the proportional pressure control. Possible savings are shown on the numerical example of water supply system of the city of Velika Gorica.


2020 ◽  
Vol 99 (6) ◽  
pp. 563-568
Author(s):  
Yuliya A. Novikova ◽  
K. B. Friedman ◽  
V. N. Fedorov ◽  
A. A. Kovshov ◽  
N. A. Tikhonova ◽  
...  

Introduction. Regulation of drinking water quality is a very important area of health care and improving the quality of life of the population of the Russian Federation.The aim of this work is the development a model for the assessment of the drinking water quality and calculating the share of the population, including urban, provided with high-quality drinking water from centralized water supply systems, taking into account new methodological approaches to the evaluation of the quality of drinking water using the example of water supply to settlements in the Leningrad Region. Material and methods. The data on the organization of centralized cold water supply systems and monitoring systems for drinking water quality and the results of laboratory studies of drinking water quality in the cities of Volkhov, Svetogorsk, Slantsy, Tosno were studied. Statistical processing of the results was performed, the categories of quality of drinking water supplied to the population were determined, the number of the population provided with high-quality drinking water from the water supply system was calculated in accordance with Guidelines 2.1.4.0143-19.Results. In 2018, 100% of the population was provided with quality drinking water only in the city of Slantsy. In the city of Tosno, this index reached of 83.5%. In the cities of Volkhov and Svetogorsk, drinking water was rated as low-quality. But it is worth noting that in the cities of Volkhov and Slantsy laboratory tests were carried out at 2 points, in the city of Svetogorsk - only at the 1 point, which, given the number of residents, is not enough. For an objective assessment of the state of drinking water and the development of measures aimed at improving its quality, it is necessary to increase the number of monitoring points, as well as to include the results of control and supervision measures and production laboratory control conducted by water supply organizations in the volume of laboratory information.Conclusion. The proposed model allows us to assess the drinking water quality in centralized water supply systems and the proportion of the population, including urban, provided with quality drinking water at the level of the water supply system, settlement, municipal district (urban district), subject of the Russian Federation


2018 ◽  
Vol 59 ◽  
pp. 00007
Author(s):  
Izabela Zimoch ◽  
Ewelina Bartkiewicz

Mathematical modelling of the water supply systems (WSS) and water quality changes in the system is a complex and difficult task to solve, it requires an interdisciplinary approach to considering the determinants of WSS work. Prognosis models of the WSS in relation to hydraulic quantities are well known and there are many packages that implement these models. These packages allow you to calculate the flow and pressure in the water distribution system under certain operating conditions. However, to make a hydraulic model a useful tool in the management of water supply systems, a calibration process is required. This process involves estimating model parameters to minimize the difference between model results and actual observations. This is a complex and multi-stage process where the network graph and parameters such as roughness coefficient, pump characteristics, or nodal demands are checked and corrected. The following work contains a complex process of calibration of the actual WSS that supplies water to the customers of the selected part of the Silesian agglomeration.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 211-217 ◽  
Author(s):  
Jānis Rubulis ◽  
Tālis Juhna

Effect of microbially available phosphorus (MAP) on biofilm development in drinking water systems was investigated at the pilot-scale experiments over 3 years. Completely mixed biofilm reactors Propella® (water detention time 24 h, flow rate 0.25 m s−1, PVC pipe coupons) were used as water distribution network models. Four experimental runs were carried out with water containing different levels of phosphorus which was limiting nutrient for bacterial growth. Positive correlation between MAP in the inlet water and heterotrophic plate count (correlation coefficient 0.95) in biofilm, as well as for the total bacteria number (correlation coefficient 0.71), was observed. However, our experiments showed that removal of phosphorus down to very low levels (below detection limits of chemical method and MAP < 1 μg L−1) was not an efficient strategy to eliminate bacterial regrowth and biofilm formation (<51,00,000 cells/cm2) in drinking water supply systems.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 572
Author(s):  
Shogo Hamamoto ◽  
Lisa Ito ◽  
Akihiro Tokai

Long-term outage of drinking water supply after earthquakes has large adverse impacts on the lives of residents and cities’ water supply systems. Priority assessment is required to determine the effective order of preparing the measures against these hazards. Previous studies have insufficiently focused on the effects of seismic resistance of core pipelines, thereby affecting all the other branched pipelines that supply the water to each residential area. In our research, we aimed to propose the appropriate order of core pipelines derived from the center of the water treatment plants in Osaka, Japan against the Nankai Trough earthquake. Solutions that cause less damage have been needed because natural disaster prediction has had a lot of uncertainty. We proposed indices that can evaluate an appropriate renewal plan that considers the damage of core pipelines of water and the renewal cost for core pipeline networks based on the scenario analysis and the Monte Carlo simulation. The amount of water distribution of core pipelines in each area is the top priority when renewing them in terms of cost-effectiveness and expected rate of water outage under the disaster.


2015 ◽  
Vol 1 (2) ◽  
pp. 129-134
Author(s):  
Ladislav Tuhovčák ◽  
Miloslav Tauš ◽  
Tomáš Sucháček

The knowledge of the current technical condition of the operated system is in the interest of the owner or operator of public water supply systems. Such information is the starting point when making decisions on investment projects or planning water mains renewal. The submitted paper introduces the methodology of preliminary assessment of the technical condition of water supply systems and outputs of the software application TEA Water, which makes it possible to assess the technical condition of the specific elements of the water supply systems and clear displaying with the presentation of the assessment results for the entire considered water supply system.


Sign in / Sign up

Export Citation Format

Share Document