scholarly journals Relocation of clustered earthquakes in the Groningen gas field

2017 ◽  
Vol 96 (5) ◽  
pp. s163-s173 ◽  
Author(s):  
Lisanne Jagt ◽  
Elmer Ruigrok ◽  
Hanneke Paulssen

AbstractPrevious locations of earthquakes induced by depletion of the Groningen gas field were not accurate enough to infer which faults in the reservoir are reactivated. A multiplet analysis is performed to identify clusters of earthquakes that have similar waveforms, representing repeating rupture on the same or nearby faults. The multiplet analysis is based on the cross-correlation of seismograms to assess the degree of similarity. Using data of a single station, six earthquake clusters within the limits of the Groningen field were identified for the period 2010 to mid-2014. Four of these clusters were suitable for a relocation method that is based on the difference in travel time between the P- and the S-wave. Events within a cluster can be relocated relative to a master event with improved accuracy by cross-correlating first arrivals. By choosing master events located with a new dense seismic network, the relocated events likely not only have better relative, but also improved absolute locations. For a few clusters with sufficient signal-to-noise detections, we show that the relocation method is successful in assigning clusters to specific faults at the reservoir level. Overall, about 90% of the events did not show clustering, despite choosing low correlation thresholds of 0.5 and 0.6. This suggests that different faults and/or fault segments with likely varying source mechanisms are active in reservoir sub-regions of a few square kilometres.

1991 ◽  
Vol 81 (6) ◽  
pp. 2395-2418
Author(s):  
D. B. Harris

Abstract A waveform correlation method is presented for identifying quarry explosions by attributing them to known mines characterized by multiple master events. The objective is to provide a reliable automatic procedure for screening the large number of quarry explosions likely to be detected by networks of in-country stations monitoring compliance with test-ban treaties. The method generalizes existing correlation techniques to compare waveforms from an unlocated event recorded at an array of sensors with a linear combination of master event waveforms recorded at the same array. The use of a linear combination reduces the chance of a missed location caused by some variation in mechanism or spectral excitation between the events being compared. The weights in the linear combination are filters, offering some compensation for variations in source time functions and errors of waveform alignment. The use of array data reduces the likelihood of false attribution by reducing bias and variance in the correlation measurement. In a test conducted with P-wave data segments recorded at a 13-element array, the method successfully resolves two source regions separated by 4 km at a range of 150 km. Resolution with single-station waveform correlations is marginal due to the limited amount of data. The statistics of the sample waveform correlation coefficient are developed and demonstrate that single-station waveform correlations are unreliable unless estimated with large signal durations T or bandwidths B. A time-bandwidth TB product exceeding 100 (or smaller TB with more stations) is necessary for reliable event attribution. The related problem of separating superimposed waveforms from two events in different source regions may be solved by cancellation. The waveforms of one event are again approximated by a linear combination of waveforms from master events in the same mine. The residual signals, obtained by subtracting the approximation from the superimposed waveforms, estimate the waveforms from the second event. This method achieves significant separation of waveforms from events 6 km apart at a range of 150 km, using data from the 13-element array. Its resolution exceeds that of conventional beam-forming methods.


2020 ◽  
Author(s):  
Hanneke Paulssen ◽  
Wen Zhou

<p>Between 2013 and 2017, the Groningen gas field was monitored by several deployments of an array of geophones in a deep borehole at reservoir level (3 km). Zhou & Paulssen (2017) showed that the P- and S-velocity structure of the reservoir could be retrieved from noise interferometry by cross-correlation. Here we show that deconvolution interferometry of high-frequency train signals from a nearby railroad not only allows determination of the velocity structure with higher accuracy, but also enables time-lapse measurements. We found that the travel times within the reservoir decrease by a few tens of microseconds for two 5-month periods. The observed travel time decreases are associated to velocity increases caused by compaction of the reservoir. However, the uncertainties are relatively large. <br>Striking is the large P-wave travel time anomaly (-0.8 ms) during a distinct period of time (17 Jul - 2 Sep 2015). It is only observed for inter-geophone paths that cross the gas-water contact (GWC) of the reservoir. The anomaly started 4 days after drilling into the reservoir of a new well at 4.5 km distance and ended 4 days after the drilling operations stopped. We did not find an associated S-wave travel time anomaly. This suggests that the anomaly is caused by a temporary elevation of the GWC (water replacing gas) of approximately 20 m. We suggest that the GWC is elevated due to pore-pressure variations during drilling. The 4-day delay corresponds to a pore-pressure diffusivity of ~5m<sup>2</sup>/s, which is in good agreement with the value found from material parameters and the diffusivity of (induced) seismicity for various regions in the world. </p>


1982 ◽  
Vol 72 (3) ◽  
pp. 729-744
Author(s):  
Charles A. Langston

abstract Fault plane solutions are derived from systematic trial-and-error (“grid”) testing of three-component body waveform data from a single station. Modeling P and SH waveform data from five shallow events recorded teleseismically demonstrates that radiation pattern information contained within the interference of the direct wave and surface reflections and the overall relative amplitude between P and SH waveforms is sufficient to discriminate between fault type (e.g., strike-slip versus dip-slip) and often agrees with well-constrained first-motion studies. Events studied are the 9 April 1968 Borrego Mountain, California; 20 June 1978 Thessaloniki, Greece; 13 August 1978 Santa Barbara, California; 20 May 1979 Alaska; and 6 August 1979 Coyote Lake, California, earthquakes. It is also shown using data from the 27 July 1980 Sharpsburg, Kentucky, earthquake that inclusion of pP/P and sP/P polarity and amplitude information to an otherwise unconstrained first-motion study can significantly improve the quality of the fault plane solution. Although there are many potential problems (source multiplicity, directivity, etc.) which can prohibit finding a good model with these techniques and inclusion of data from many stations is clearly desirable, the results of this study suggest that sparse, high-quality waveform data sets may be as or more useful for obtaining source mechanisms than standard first-motion studies. At a minimum, they should be performed together as a consistency check. This procedure would be most useful in the common situation where only a few receivers are available for a particular event.


2021 ◽  
Author(s):  
Annemarie Muntendam-Bos ◽  
Nilgün Güdük

<p>We present a data-driven analysis to derive whether statistically significant spatial and/or temporal Gutenberg-Richter b-value variations exist within the induced earthquake catalogue of the Groningen gas field. We utilize the method developed by Kamer and Hiemer (2015; J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011510 ) which is based on optimal partitioning using Voronoi tessellation, penalized likelihood, and wisdom of the crowd philosophy. Our implementation derives both the magnitude of completeness and the b-values simultaneously. The magnitude of completeness is computed with the maximum curvature method with a correction applied to avoid bias due to catalogue incompleteness. Finally, following Marzocchi et al. (2020; Geophys. J. Int. 220, doi: 10.1093/gji/ggz541) the b-values computed are corrected for bin size and small sample sizes.</p><p>In a first step we have limited the analysis to spatial variations in the b-values. A significant advantage of the approach taken is that it is feasible to also derive b-values in regions of very low data density. We will show that a statistically significant variation in b-values is obtained. Very low b-values (b<0.8) are observed in the central-northern part of the gas field. However, in the west near the production cluster Eemskanaal (EKL) and in the east near the city of Delfzijl significantly higher b-values (b>1.1) are observed. A Kolmogorov-Smirnov test of frequency-magnitude distributions for the two areas obtains a p-value of 1.5 10-13 and 2.3 10-12 for the EKL region and Delfzijl regions, respectively, rendering the difference more than statistically significant at the 99% confidence level.</p><p>In a second step we extended the spatial analysis to a spatial-temporal analysis. The results of the analysis show that the Groningen earthquake database is too small to derive meaningful spatial results for the full Groningen gas field based on multiple random temporal nodes.  We divided the dataset in two almost equal datasets: both containing roughly 50% of the data and of comparable spatial resolution. Spatial analysis of these two subsets of the catalogue shows a significant decrease of the b-values in the central and southern regions. Particularly in the western EKL region the b-value decreases from 1.2 to 0.92. The decrease is close to significant at the 90% confidence level. The northern region exhibits comparable low b-values in both periods. As the data in the first decade is primarily concentrated in the northern region, we have attempted to assess the spatial b-value here in the period prior to 2005. We find the high b-value area is significantly smaller and the minimum value is higher (b = 0.96 pre-2005 versus b = 0.88 post-2012). The difference is significant only at the interquartile level, but the model resolution is low.</p><p>Based on our results, we could conclude a spatial and temporal variation in b-value is observed. However, despite our efforts to limit bias in the derivation, variations could still result from the presence of a truncation. Hence, we will extend the current analysis by a comparable analysis assuming a constant b-value and estimating the corner magnitude of a taper truncation.</p>


2017 ◽  
Vol 96 (5) ◽  
pp. s117-s129 ◽  
Author(s):  
Rob M.H.E. van Eijs ◽  
Onno van der Wal

AbstractNot long after discovery of the Groningen field, gas-production-induced compaction and consequent land subsidence was recognised to be a potential threat to groundwater management in the province of Groningen, in addition to the fact that parts of the province lie below sea level. More recently, NAM's seismological model also pointed to a correlation between reservoir compaction and the observed induced seismicity above the field. In addition to the already existing requirement for accurate subsidence predictions, this demanded a more accurate description of the expected spatial and temporal development of compaction.Since the start of production in 1963, multiple levelling campaigns have gathered a unique set of deformation measurements used to calibrate geomechanical models. In this paper we present a methodology to model compaction and subsidence, combining results from rock mechanics experiments and surface deformation measurements. Besides the optical spirit-levelling data, InSAR data are also used for inversion to compaction and calibration of compaction models. Residual analysis, i.e. analysis of the difference between measurement and model output, provides confidence in the model results used for subsidence forecasting and as input to seismological models.


2019 ◽  
Vol 218 (3) ◽  
pp. 1781-1795 ◽  
Author(s):  
M Chmiel ◽  
A Mordret ◽  
P Boué ◽  
F Brenguier ◽  
T Lecocq ◽  
...  

SUMMARY The Groningen gas field is one of the largest gas fields in Europe. The continuous gas extraction led to an induced seismic activity in the area. In order to monitor the seismic activity and study the gas field many permanent and temporary seismic arrays were deployed. In particular, the extraction of the shear wave velocity model is crucial in seismic hazard assessment. Local S-wave velocity-depth profiles allow us the estimation of a potential amplification due to soft sediments. Ambient seismic noise tomography is an interesting alternative to traditional methods that were used in modelling the S-wave velocity. The ambient noise field consists mostly of surface waves, which are sensitive to the Swave and if inverted, they reveal the corresponding S-wave structures. In this study, we present results of a depth inversion of surface waves obtained from the cross-correlation of 1 month of ambient noise data from four flexible networks located in the Groningen area. Each block consisted of about 400 3-C stations. We compute group velocity maps of Rayleigh and Love waves using a straight-ray surface wave tomography. We also extract clear higher modes of Love and Rayleigh waves. The S-wave velocity model is obtained with a joint inversion of Love and Rayleigh waves using the Neighbourhood Algorithm. In order to improve the depth inversion, we use the mean phase velocity curves and the higher modes of Rayleigh and Love waves. Moreover, we use the depth of the base of the North Sea formation as a hard constraint. This information provides an additional constraint for depth inversion, which reduces the S-wave velocity uncertainties. The final S-wave velocity models reflect the geological structures up to 1 km depth and in perspective can be used in seismic risk modelling.


Author(s):  
P. A. Fokker ◽  
K. Van Thienen-Visser

Abstract. Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.


2017 ◽  
Vol 59 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Min Gyung Kim ◽  
Hyunjoo Yang ◽  
Anna S. Mattila

New York City launched a restaurant sanitation letter grade system in 2010. We evaluate the impact of customer loyalty on restaurant revisit intentions after exposure to a sanitation grade alone, and after exposure to a sanitation grade plus narrative information about sanitation violations (e.g., presence of rats). We use a 2 (loyalty: high or low) × 4 (sanitation grade: A, B, C, or pending) between-subjects full factorial design to test the hypotheses using data from 547 participants recruited from Amazon MTurk who reside in the New York City area. Our study yields three findings. First, loyal customers exhibit higher intentions to revisit restaurants than non-loyal customers, regardless of sanitation letter grades. Second, the difference in revisit intentions between loyal and non-loyal customers is higher when sanitation grades are poorer. Finally, loyal customers are less sensitive to narrative information about sanitation violations.


2011 ◽  
Vol 140 (5) ◽  
pp. 951-958 ◽  
Author(s):  
A. HAASNOOT ◽  
F. D. H. KOEDIJK ◽  
E. L. M. OP DE COUL ◽  
H. M. GÖTZ ◽  
M. A. B. VAN DER SANDE ◽  
...  

SUMMARYEthnic disparities in chlamydia infections in The Netherlands were assessed, in order to compare two definitions of ethnicity: ethnicity based on country of birth and self-defined ethnicity. Chlamydia positivity in persons aged 16–29 years was investigated using data from the first round of the Chlamydia Screening Implementation (CSI, 2008–2009) and surveillance data from STI centres (2009). Logistic regression modelling showed that being an immigrant was associated with chlamydia positivity in both CSI [adjusted odds ratio (aOR) 2·3, 95% confidence interval (CI) 2·0–2·6] and STI centres (aOR 1·4, 95% CI 1·3–1·5). In both settings, 60% of immigrants defined themselves as Dutch. Despite the difference, classification by self-defined ethnicity resulted in similar associations between (non-Dutch) ethnicity and chlamydia positivity. However, ethnicity based on country of birth explained variation in chlamydia positivity better, and is objective and constant over time and therefore more useful for identifying young persons at higher risk for chlamydia infection.


1998 ◽  
Vol 30 (2) ◽  
pp. 227-243
Author(s):  
K. N. S. YADAVA ◽  
S. K. JAIN

This paper calculates the mean duration of the postpartum amenorrhoea (PPA) and examines its demographic, and socioeconomic correlates in rural north India, using data collected through 'retrospective' (last but one child) as well as 'current status' (last child) reporting of the duration of PPA.The mean duration of PPA was higher in the current status than in the retrospective data;n the difference being statistically significant. However, for the same mothers who gave PPA information in both the data sets, the difference in mean duration of PPA was not statistically significant. The correlates were identical in both the data sets. The current status data were more complete in terms of the coverage, and perhaps less distorted by reporting errors caused by recall lapse.A positive relationship of the mean duration of PPA was found with longer breast-feeding, higher parity and age of mother at the birth of the child, and the survival status of the child. An inverse relationship was found with higher education of a woman, higher education of her husband and higher socioeconomic status of her household, these variables possibly acting as proxies for women's better nutritional status.


Sign in / Sign up

Export Citation Format

Share Document