scholarly journals AN ANALYTICAL FRAMEWORK FOR COLLABORATIVE CLOUD-BASED CAD PLATFORM AFFORDANCES

2021 ◽  
Vol 1 ◽  
pp. 375-384
Author(s):  
Tucker Marion ◽  
Alison Olechowksi ◽  
Junfeng Guo

AbstractCloud computing has had an increasing influence on engineering and design. A hallmark of sites such as Github is the promise of rapid iteration and real-time collaboration. Recently, cloud collaborative software has migrated into the realm of physical product design, with computer-aided design (CAD) software platforms such as PTC's Onshape. In this research, we suppose that the effect of cloud collaborative software is multi-faceted; that this type of tool affords a number of new capabilities and behaviours for design individuals and teams. We develop a framework on how to contextualize the changes to design tasks afforded by the unique attributes of these cloud-based, collaborative design tools. We find evidence in our research of design engineers leveraging many aspects of the framework, particularly in learning and engagement with their team, and with resources available from communities of users. However, we find that real-world design engineers are not yet utilizing the full capability of synchronous cloud-platforms with respect to real-time synchronous design iteration within teams or communities.

2006 ◽  
Vol 7 (2) ◽  
pp. 113-125 ◽  
Author(s):  
Min Li ◽  
Shuming Gao ◽  
Charlie C. L. Wang

This paper presents an integration-based solution for developing a real-time collaborative design (co-design) platform on heterogeneous computer-aided design (CAD) systems. Different from the visualization-based approaches, the product models are allowed to be constructed and modified from various sites together in the proposed collaborative design platform. Our approach is based on a mechanism for the translation between system modeling operations (SMOs) and neutral modeling commands (NMCs). Every operation given by a user on one site is translated into a NMC and transmitted to all the other sites through the network, and then the received NMC is converted into corresponding SMOs on every other site, instantaneously. Since only the commands but not the product data are transferred, the data size under transmission is greatly reduced, so that a real-time synchronization can be achieved with a standard network bandwidth. In addition, by developing system-dependent SMO↔NMC translators on different client CAD systems, users on different sites could join the collaboration by using their familiar CAD systems; this is the benefit that cannot be offered by the homogeneous co-design systems. The prototype implementation proves that our approach works well for integrating various current popular commercial CAD systems into a real-time collaborative design platform.


2021 ◽  
Vol 13 (3) ◽  
pp. 1081
Author(s):  
Yoon Kyung Lee

Technologies that are ready-to-use and adaptable in real time to customers’ individual needs are influencing the supply chain of the future. This study proposes a supply chain framework for an innovative and sustainable real-time fashion system (RTFS) between enterprises, designers, and consumers in 3D clothing production systems, using information communication technology, artificial intelligence (AI), and virtual environments. In particular, the RTFS is targeted at customers actively involved in product purchasing, personalising, co-designing, and manufacturing planning. The fashion industry is oriented towards 3D services as a service model, owing to the automation and democratisation of product customisation and personalisation processes. Furthermore, AI offers referral services to prosumers or/and customers and companies, and proposes individual designs with perfect styles and measurements using new 3D computer aided design and AI-based product design technologies for fashion and design companies and customers. Consequently, 3D fashion products in the RTFS supply chain are entirely digital, saving time and money with sampling and tracking capabilities, secured, and trusted with personalised service delivery.


Author(s):  
James I. Novak ◽  
Mark Zer-Ern Liu ◽  
Jennifer Loy

This chapter builds new knowledge for design engineers adopting fused deposition modeling (FDM) technology as an end manufacturing process, rather than simply as a prototyping process. Based on research into 2.5D printing and its use in real-world additive manufacturing situations, a study featuring 111 test pieces across the range of 0.4-4.0mm in thickness were analyzed in increments of 0.1mm to understand how these attributes affect the quality and print time of the parts and isolate specific dimensions which are optimized for the FDM process. The results revealed optimized zones where the outer wall, inner wall/s, and/or infill are produced as continuous extrusions significantly faster to print than thicknesses falling outside of optimized zones. As a result, a quick reference graph and several equations are presented based on fundamental FDM principles, allowing design engineers to implement optimized wall dimensions in computer-aided design (CAD) rather than leaving print optimization to technicians and manufacturers in the final process parameters.


Author(s):  
Kazuhiro Muramatsu ◽  
Sonam Wangmo

Design education is important at technical universities and colleges. In general, real product design requires collaborative work. In this chapter, the authors discuss collaborative design education. An A360 cloud platform on Autodesk's 3D computer-aided design “AutoCAD” is adopted to illustrate a collaborative design activity implemented in the Engineering Graphics class offered at the College of Science and Technology, Royal University of Bhutan. By using A360 cloud, students can share a 3D model with group members. Based on feedback received, students can modify the initial model, share it, print, and discuss the modified object with members. This collaborative work allows students to create enhanced 3D design objects while engaged in discussions and interactions. The authors also discuss some difficulties encountered during the collaborative process and offer recommendations and future research ideas.


2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Carlos C. Cortes Torres ◽  
Ryota Yasudo ◽  
Hideharu Amano

The energy of real-time systems for embedded usage needs to be efficient without affecting the system’s ability to meet task deadlines. Dynamic body bias (BB) scaling is a promising approach to managing leakage energy and operational speed, especially for system-on-insulator devices. However, traditional energy models cannot deal with the overhead of adjusting the BB voltage; thus, the models are not accurate. This paper presents a more accurate model for calculating energy overhead using an analytical double exponential expression for dynamic BB scaling and an optimization method based on nonlinear programming with consideration of the real-chip parameter constraints. The use of the proposed model resulted in an energy reduction of about 32% at lower frequencies in comparison with the conventional model. Moreover, the energy overhead was reduced to approximately 14% of the total energy consumption. This methodology provides a framework and design guidelines for real-time systems and computer-aided design.


2013 ◽  
Vol 328 ◽  
pp. 149-153
Author(s):  
Zhi Hui Dong ◽  
Duan Feng Han ◽  
Li Hao Yuan

Based on NURBS algorithm, this paper processes and renders curved hull in OpenGL platform, and applies Tree-Structure to manage all the real-time geometric data. And what is more, extend the functions into curved ratio check, the model's parameter adjustment and output etc. At last, results of instances will be given to illuminate the effects.


Sign in / Sign up

Export Citation Format

Share Document