scholarly journals COMPUTATIONAL STUDY ON DESIGN SPACE EXPANSION DURING TEAMWORK

2021 ◽  
Vol 1 ◽  
pp. 691-700
Author(s):  
Marija Majda Perisic ◽  
Mario Štorga ◽  
John S. Gero

AbstractWhen observing a design space expansion during teamwork, several studies found that cumulative solution-related issues' occurrence follows a linear trend. Such findings contradict the hypothesis of solution-related issues being characteristic for the later design stages. This work relies on agent-based simulations to explore the emerging patterns in design solution space expansion during teamwork. The results demonstrate trends that accord with the empirical findings, suggesting that a cognitive effort in solution space expansion remains constant throughout a design session. The collected data on agents' cognitive processes and solution space properties enabled additional insights, which led to the detection of four distinct regimes of design solution space expansion.

Author(s):  
Marija Majda Perisic ◽  
Tomislav Martinec ◽  
Mario Storga ◽  
John S Gero

AbstractThis paper presents the results of computational experiments aimed at studying the effect of experience on design teams’ exploration of problem-solution space. An agent-based model of a design team was developed and its capability to match theoretically-based predictions is tested. Hypotheses that (1) experienced teams need less time to find a solution and that (2) in comparison to the inexperienced teams, experienced teams spend more time exploring the solution-space than the problem-space, were tested. The results provided support for both of the hypotheses, demonstrating the impact of learning and experience on the exploration patterns in problem and solution space, and verifying the system's capability to produce the reliable results.


Author(s):  
Matt R. Bohm ◽  
Robert B. Stone

Over the last few decades design researchers have put forward theories and proposed methodologies that increase the chance that a design team will reliably arrive at the optimal solution to a given design problem. Studies, however, bear out that theories and methodologies alone will not guarantee an optimal or even good design solution. Instead, a breadth of knowledge across multiple engineering domains and the time and tools to thoroughly evaluate the design space are as important as any prescriptive design method. This work presents one of the underlying engineering technologies needed to leverage artificial intelligence approaches to thoroughly search the design space and synthesize concept solutions. Artificial intelligence methods are employed to generate a natural language to formal component terms thesaurus as part of a novel form-initiated concept generation approach. With this fundamental natural language interpretation algorithm, designers may now suggest an initial solution to a problem, expressed in everyday terms, and then rely on a machine to abstract the underlying functionality and conduct a thorough search of the solution space.


Author(s):  
Kazuhiro Aoyama ◽  
Yoshihiro Uchibori ◽  
Kazuya Oizumi ◽  
Shigeki Hiramatsu ◽  
Hiroshi Unesaki ◽  
...  

Abstract In this study, following the concept of set-based design, after preparing global calculation results, we introduced the approach of setting the design solution area that satisfies the product performance goals of the system design. In this approach, from the viewpoint of considering uncertainty, we aimed to develop an analysis method that can get the organic relationship between target variables and design variables. And more, under the assumption that it is difficult to comprehend the full picture of products that are becoming more sophisticated and complex with the knowledge that has been fostered by skilled engineers, the proposed system uses the objective calculation indices that is provided knowledge of the designer. Specifically, the following method are proposed to solve the problem. - Implementation of meta-modeling of design space. - Classified solution space using a density-based clustering method to detect that the solution spaces are divided into multiple disconnected space. - Defined an index called distribution concentration and expressed the possibility of dealing with the uncertainty of the solution domain. - The network diagram based on the calculated index values was proposed to confirm the change in the characteristics of the solution space when the performance target of the product was changed. Finally, the effectiveness of the proposed method was verified by applying it to actual simulation results.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Wei Xu ◽  
Ke Zhao ◽  
Yatao Li ◽  
Peitao Cheng

This paper addresses the functional representation based on the event model. In the event model, the ontology is defined based on the theory of propositional logic to describe the connotation of the event, and the variant is defined based on the theories of domain relational calculus and set theory to express the variation range of the event, which is alterable part of the event under the constraints of the ontology. Function is an important concept in conceptual design and has its connotation and extension. The functional representation is proposed based on the event model. The ontology of event is used to describe the connotation of function and to reflect the stability of function. The variant of the event is used to represent the extension and to incarnate the variety of function. The extension of function is the change range of function under the constraints of the connotation. The proposed functional representation divides the function into the immutable part and the alterable part, facilitating the expansion of design space. A functional reasoning model is also put forward based on the event model to support the function reasoning on the computers. Finally, a simple case validates the feasibility of the model.


Author(s):  
Ming-Yih Lee ◽  
Arthur G. Erdman ◽  
Salaheddine Faik

Abstract A generalized accuracy performance synthesis methodology for planar closed chain mechanisms is proposed. The relationship between the sensitivity to variations of link lengths and the location of the moving pivots of four-link mechanisms is investigated for the particular objective of three and four position synthesis. In the three design positions case, sensitivity maps with isosensitivity curves plotted in the design solution space allow the designer to synthesize a planar mechanism with desired sensitivity value or to optimize sensitivity from a set of acceptable design solutions. In the case of four design positions, segments of the Burmester design curves that exhibit specified sensitivity to link length tolerance are identified. A performance sensitivity criterion is used as a convenient and a useful way of discriminating between many possible solutions to a given synthesis problem.


Author(s):  
Giacomo Kolks ◽  
Jürgen Weber

In contrast to rotational hydraulic displacement units, such as pumps or motors, conventional hydraulic cylinder actuators do not allow a continuous variation of their displacement quantity: the piston area is regarded constant. In order to adapt to varying load and velocity requirements in a load cycle under torque restrictions of the driving motor, cylinder drives often implement pumps with variable displacement. In this paper, cylinders with discretely variable effective piston area by means of variable circuitry of multi-chamber cylinders are discussed. Hydraulic symmetry or constant asymmetry of the hydraulic cylinder are traits of the cylinder that are required to fit the cylinder to pump structures for closed-circuit displacement control, as given in electro-hydrostatic compact drives (ECD). A methodology to generate all possible solutions of variable area cylinders under the constraint of ECD requirements is proposed. A comprehensive description of the solution space is given, based on combinatorics and solution of equation systems. The methodology dealing with abstract cylinder areas is backed up by a general approach to describe the mechanical cylinder design space to combine multiple cylinder areas in one structural unit. Examples for design of three and four area cylinders are given and results are discussed. The paper concludes with the development of a demonstrator design to allow experimental validation in a subsequent step.


2021 ◽  
pp. 1-21
Author(s):  
Ramona Dogea ◽  
◽  
Xiu T Yan ◽  
Richard Millar ◽  
◽  
...  

Additive manufacturing has been adopted widely across various industries for producing parts mainly due to their ability to create complex geometries, eliminate material wastage and enable faster production rate, among others. Additive manufacturing has also increased design solution space by enabling exploration of mechatronic solutions for mechanical structures. This includes the integration of smart devices into wing structures to achieve a datadriven predictive maintenance-based system. For this, there is still the need to continuously explore various ways of integrating sensory capability into a mechanical structure during the manufacturing processes to ensure improvement and reliability of aircraft components. The scope of this paper was to analyse different wing rib geometries and the influence of embedding sensory capability via design for additive manufacturing process. In this work, three wing rib geometries with cut-outs and for sensory placement were designed and analysed to estimate their equivalent stress and deformation when such sensory locations are introduced. The results confirm the idea that it is feasible to introduce holding cavities for structural performance monitoring sensors without compromising the structural design requirements. The results also show that deformation and stress are highly dependent on the rib thickness and the insertion of sensory locations


2021 ◽  
Author(s):  
Aakriti Tarun Sharma

The process of converting a behavioral specification of an application to its equivalent system architecture is referred to as High Level-Synthesis (HLS). A crucial stage in embedded systems design involves finding the trade off between resource utilization and performance. An exhaustive search would yield the required results, but would take a huge amount of time to arrive at the solution even for smaller designs. This would result in a high time complexity. We employ the use of Design Space Exploration (DSE) in order to reduce the complexity of the design space and to reach the desired results in less time. In reality, there are multiple constraints defined by the user that need to be satisfied simultaneously. Thus, the nature of the task at hand is referred to as Multi-Objective Optimization. In this thesis, the design process of DSP benchmarks was analyzed based on user defined constraints such as power and execution time. The analyzed outcome was compared with the existing approaches in DSE and an optimal design solution was derived in a shorter time period.


2014 ◽  
Vol 527 ◽  
pp. 306-310
Author(s):  
Zhi Fei Li ◽  
Zi Mo Li ◽  
Feng Yang ◽  
Yi Fan Zhu

It is an urgently problem to be solved that how to test a weapon system-of-systems capabilities in a joint operational context. Firstly, based on the capability assessment of weapon system-of-systems, a procedure of weapon system-of-systems capabilities evaluation strategies design space is proposed. Secondly, supported by agent-based simulation tools, an exploratory analysis example is given which uses the fractional factorial design and stepwise regression fit. This paper makes a better try on the measures selected of the system-of-systems capabilities in the early period of weapon equipment acquisition.


Author(s):  
Rajkumar Roy ◽  
Ian C. Parmee ◽  
Graham Purchase

Abstract The paper describes a Qualitative Evaluation System developed using a fuzzy expert system. The evaluation system gives a qualitative rating to design solutions by considering manufacturability aspects, choice of materials and some special preferences. The information is used in decision support for engineering design. The system is an integrated part of a decision support tool for engineering design called the ‘Adaptive Search Manager’ (ASM). ASM uses an adaptive search technique to identify multiple design solutions for a 12 dimensional Turbine Blade Cooling System design problem. Thus the task has been to develop a fuzzy expert system that can qualitatively evaluate any design solution from a design space using a realistically small number of fuzzy rules. The developed system utilises a knowledge separation and then a knowledge integration technique. The design knowledge is first separated into three categories: inter variable knowledge, intra variable knowledge and heuristics. Inter variable knowledge and intra variable knowledge are integrated using a concept of “compromise”. The qualitative evaluation system can evaluate any design solution within the 12 dimensional design space, but uses only 44 fuzzy rules and one function that implements the inter variable knowledge.


Sign in / Sign up

Export Citation Format

Share Document