Changes of Chemical Structure and Composition of Charcoal by Radiocarbon Pretreatments: Decontamination by ABA and ABOx Treatments

Radiocarbon ◽  
2016 ◽  
Vol 58 (3) ◽  
pp. 565-581 ◽  
Author(s):  
Shinji Tomiyama ◽  
Masayo Minami ◽  
Toshio Nakamura ◽  
Koichi Mimura ◽  
Hiroyuki Kagi

AbstractCharcoal is widely used for radiocarbon dating in archaeological and paleoenvironmental studies. Reliable 14C dating requires appropriate chemical treatment to remove postdeposition contamination from the charcoal samples. This study assesses two pretreatments: acid-base-acid (ABA) and acid-base-oxidation with stepped combustion (ABOx-SC). In addition to 14C, the effects of the treatments on the chemical structure and composition of charcoal were studied using Fourier transform infrared spectroscopy (FTIR) and C/H/O elemental analysis. Samples of pine wood charred in the laboratory at 270, 300, 400, 500, and 600°C, and environmental samples of charred pine wood from pyroclastic flow deposits in southern Kyushu, Japan, were tested. The laboratory-charred samples showed that NaOH treatment removed highly hydrophilic organic components derived from endogenous and exogenous organic materials in the samples and that oxidation treatment caused the oxidative degradation of molecules in samples starting from its edges. The ABA-treated environmental charcoal yielded younger 14C dates than the ABOx-treated samples, probably owing to the effects of remaining organic contaminants bound to the edges of the aromatic molecular structures produced by the original pyrolysis. Meanwhile, it was found that ABA-SC treatment can reduce contaminants as effectively as ABOx-SC treatment. This implies that the stepped combustion (SC), not the chemical oxidation, is the key to reduce contaminant residue left after ABA and ABOx treatments. The results in this study indicate that the investigation of the structural and compositional changes of charcoal during its pretreatment is useful for assessment of the reliability of the 14C ages.

2021 ◽  
Vol 8 (3) ◽  
pp. 711-722
Author(s):  
Katherine E. Greenstein ◽  
Matthew R. Nagorzanski ◽  
Bailey Kelsay ◽  
Edgard M. Verdugo ◽  
Nosang V. Myung ◽  
...  

Electrospun carbon nanofibers with integrated titanium dioxide nanoparticles are used for water treatment in a photoactive membrane filtration system.


Inorganics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 49
Author(s):  
Gabriella Munzi ◽  
Giuseppe Consiglio ◽  
Salvatore Failla ◽  
Santo Di Bella

In this paper we report the binding properties, by combined 1H NMR, optical absorption, and fluorescence studies, of a molecular tweezer composed of two Zn(salen)-type Schiff-base units connected by a flexible spacer, towards a series of ditopic diamines having a strong Lewis basicity, with different chain length and rigidity. Except for the 1,2-diaminoethane, in all other cases the formation of stable 1:1 Lewis acid-base adducts with large binding constants is demonstrated. For α,ω-aliphatic diamines, binding constants progressively increase with the increasing length of the alkyl chain, thanks to the flexible nature of the spacer and the parallel decreased conformational strain upon binding. Stable adducts are also found even for short diamines with rigid molecular structures. Given their preorganized structure, these latter species are not subjected to loss of degrees of freedom. The binding characteristics of the tweezer have been exploited for the colorimetric and fluorometric selective and sensitive detection of piperazine.


2021 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bozena Smreczak

<p>The objective of this paper was to investigate the molecular characterization of individual humic substances ( fulvic acids-FAs, humic ascids-HAs, and humins-HNs), which are the most reactive soil components and exhibit high sorption capacity in relation to various groups of organic contaminants. A wide spectrum of spectroscopic (UV-VIS, VIS-nearIR), as well as electrochemical (zeta potential, particle size diameter, polidyspersity index), methods were applied to find the relevant differences in the behavior, formation, composition and sorption properties of HS fractions derived from various mineral soils.</p><p>Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO.</p><p>Our study showed that significant differences in the molecular structures of FAs, HAs and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles.  </p><p>The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition and sorption properties, which reflects their binding potential to different group of organic contaminants, but the general properties of individual fractions are similar and do not depend on the type of soil.</p><p><em>Acknowledgement: The studies were supported from the National Science Centre project No. 2018/29/N/ST10/01320 “Analysis of the fractional composition and sorption properties of humic substances in relation to various groups of organic contaminants”</em></p>


Author(s):  
Bing Han ◽  
Wen Liu ◽  
Dongye Zhao

Emerging Organic Contaminants (EOCs) such as steroidal estrogen hormones are of growing concern in recent years, as trace concentrations of these hormones can cause adverse effects on the environmental and human health. While these hormones have been widely detected in soil and groundwater, effective technology has been lacking for in-situ degradation of these contaminants. This chapter illustrates a new class of stabilized MnO2 nanoparticles and a new in-situ technology for oxidative degradation of EOCs in soil and groundwater. The stabilized nanoparticles were prepared using a low-cost, food-grade Carboxymethyl Cellulose (CMC) as a stabilizer. The nanoparticles were then characterized and tested for their effectiveness for degradation of both aqueous and soil-sorbed E2 (17ß-estradiol). Column tests confirmed the effectiveness of the nanoparticles for in-situ remediation of soil sorbed E2. The nanoparticle treatment decreased both water leachable and soil-sorbed E2, offering a useful alternative for in-situ remediation of EOCs in the subsurface.


2017 ◽  
Vol 116 ◽  
pp. 106-115 ◽  
Author(s):  
Tiantian Ye ◽  
Zongsu Wei ◽  
Richard Spinney ◽  
Chong-Jian Tang ◽  
Shuang Luo ◽  
...  

2015 ◽  
Vol 15 (5) ◽  
pp. 1034-1039 ◽  
Author(s):  
Lin-Lan Zhuang ◽  
Yin-Hu Wu ◽  
Xiao-Jie Shi ◽  
Tian-Yuan Zhang ◽  
Hong-Ying Hu

Water recycling is an effective way to reduce water consumption in the industrialization of microalgae-based biomass/bioenergy production. The soluble algal products (SAP) which inhibit the microalgae growth will accumulate in the recycled water. Therefore, the ozone oxidation treatment of SAP produced by Scenedesmus sp. LX1 was studied to reduce the inhibition of SAP. The experimental results showed that there was almost no change in the content of SAP (counted by dissolved organic carbon) after ozonation, but the inhibition of SAP on microalgae growth disappeared. The intrinsic growth rate (r) of Scenedesmus sp. LX1 in the cultivation solution containing untreated SAP was 0.52 d−1, and it rose to 0.95 d−1 after SAP was ozonized. The maximum population growth rate (Rmax) followed a similar trend, increasing from 9.19 × 105 to 13.0 × 105 cells mL−1 d−1. It was suggested that the changes of fluorescence and hydrophilic–hydrophobic/acid–base property of SAP after ozonation leads to the disappearance of SAP inhibition on microalgae growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davood Azadi ◽  
Hasan Shojaei

AbstractAnthropogenic pollutants are known to have adverse effect on ecosystem, biodiversity and human health. Bioremediation is an option that has been widely used to remediate organic contaminants and reduce the risk of these hazardous materials. Microorganisms are readily available to screen and can be rapidly characterized to be applied in many extreme environmental conditions. Actinomycetes have a great potential for the production of bioactive secondary metabolites which have biodegradation activity. This study aimed to screen and characterize Nocardia species with biodegradation potential from diverse Iranian ecosystems. The isolates were screened from 90 collected environmental samples, identified and characterized using conventional and molecular microbiological methods including the PCR amplification and sequencing analysis of 16S rRNA and rpoB genetic markers. Growth rate in presence of pollutants, chromatography, Gibbs and turbidometric methods were used to determine bioremediation ability. A total of 19 Nocardia isolates were recovered from the cultured samples (21.1%) that belonged to 10 various species. The most prevalent Nocardia species was N. farcinica; 4 isolates (21%), followed by N. cyriacigeorgica and N. cashijiensis like; 3 isolates each (15.7%) and N. asteroides and N. kroppenstedtii; 2 isolates each (10.5%). Our results showed that various Nocardia species have great potential for bioremediation purposes, although they have not received much attention of the scholars for such significant usage.


1982 ◽  
Vol 16 (7) ◽  
pp. 387-396 ◽  
Author(s):  
Wilfred E. Pereira ◽  
Colleen E. Rostad ◽  
Howard E. Taylor ◽  
John M. Klein

Sign in / Sign up

Export Citation Format

Share Document