scholarly journals On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds

2004 ◽  
Vol 70 (2) ◽  
pp. 177-198 ◽  
Author(s):  
Kang-Hai Tan ◽  
Xiao-Ping Yang

We study some sub-Riemannian objects (such as horizontal connectivity, horizontal connection, horizontal tangent plane, horizontal mean curvature) in hypersurfaces of sub-Riemannian manifolds. We prove that if a connected hypersurface in a contact manifold of dimension more than three is noncharacteristic or with isolated characteristic points, then there exists at least a piecewise smooth horizontal curve in this hypersurface connecting any two given points in it. In any sub-Riemannian manifold, we obtain the sub-Riemannian version of the fundamental theorem of Riemannian geometry: there exists a unique nonholonomic connection which is completely determined by the sub-Riemannian structure and is “symmetric” and compatible with the sub-Riemannian metric. We use this nonholonomic connection to study horizontal mean curvature of hypersurfaces.

2011 ◽  
Vol 08 (04) ◽  
pp. 725-752 ◽  
Author(s):  
AUREL BEJANCU

We study the geometry of a sub-Riemannian manifold (M, HM, VM, g), where HM and VM are the horizontal and vertical distribution respectively, and g is a Riemannian extension of the Riemannian metric on HM. First, without the assumption that HM and VM are orthogonal, we construct a sub- Riemannian connection ▽ on HM and prove some Bianchi identities for ▽. Then, we introduce the horizontal sectional curvature, prove a Schur theorem for sub-Riemannian geometry and find a class of sub-Riemannian manifolds of constant horizontal curvature. Finally, we define the horizontal Ricci tensor and scalar curvature, and some sub-Riemannian differential operators (gradient, divergence, Laplacian), extending some results from geometry to the sub-Riemannian setting.


Author(s):  
Alessandro Goffi ◽  
Francesco Pediconi

AbstractWe investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and $$\infty $$ ∞ -Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián Pozuelo ◽  
Manuel Ritoré

Abstract We consider an asymmetric left-invariant norm ∥ ⋅ ∥ K {\|\cdot\|_{K}} in the first Heisenberg group ℍ 1 {\mathbb{H}^{1}} induced by a convex body K ⊂ ℝ 2 {K\subset\mathbb{R}^{2}} containing the origin in its interior. Associated to ∥ ⋅ ∥ K {\|\cdot\|_{K}} there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of ℝ 2 {{\mathbb{R}}^{2}} . Under the assumption that K has C 2 {C^{2}} boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C 2 {C^{2}} boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function H K {H_{K}} out of the singular set. In the case of non-vanishing mean curvature, the condition that H K {H_{K}} be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂ ⁡ K {\partial K} dilated by a factor of 1 H K {\frac{1}{H_{K}}} . Based on this we can define a sphere 𝕊 K {\mathbb{S}_{K}} with constant mean curvature 1 by considering the union of all horizontal liftings of ∂ ⁡ K {\partial K} starting from ( 0 , 0 , 0 ) {(0,0,0)} until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.


Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.


2018 ◽  
Vol 2018 (743) ◽  
pp. 229-244 ◽  
Author(s):  
Jingyi Chen ◽  
John Man Shun Ma

Abstract Let F_{n} : (Σ, h_{n} ) \to \mathbb{C}^{2} be a sequence of conformally immersed Lagrangian self-shrinkers with a uniform area upper bound to the mean curvature flow, and suppose that the sequence of metrics \{ h_{n} \} converges smoothly to a Riemannian metric h. We show that a subsequence of \{ F_{n} \} converges smoothly to a branched conformally immersed Lagrangian self-shrinker F_{\infty} : (Σ, h) \to \mathbb{C}^{2} . When the area bound is less than 16π, the limit {F_{\infty}} is an embedded torus. When the genus of Σ is one, we can drop the assumption on convergence h_{n} \to h. When the genus of Σ is zero, we show that there is no branched immersion of Σ as a Lagrangian self-shrinker, generalizing the rigidity result of [21] in dimension two by allowing branch points.


1962 ◽  
Vol 14 ◽  
pp. 87-112 ◽  
Author(s):  
J. R. Vanstone

Modern differential geometry may be said to date from Riemann's famous lecture of 1854 (9), in which a distance function of the form F(xi, dxi) = (γij(x)dxidxj½ was proposed. The applications of the consequent geometry were many and varied. Examples are Synge's geometrization of mechanics (15), Riesz’ approach to linear elliptic partial differential equations (10), and the well-known general theory of relativity of Einstein.Meanwhile the results of Caratheodory (4) in the calculus of variations led Finsler in 1918 to introduce a generalization of the Riemannian metric function (6). The geometry which arose was more fully developed by Berwald (2) and Synge (14) about 1925 and later by Cartan (5), Busemann, and Rund. It was then possible to extend the applications of Riemannian geometry.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1469
Author(s):  
Andrew James Bruce ◽  
Janusz Grabowski

Very loosely, Z2n-manifolds are ‘manifolds’ with Z2n-graded coordinates and their sign rule is determined by the scalar product of their Z2n-degrees. A little more carefully, such objects can be understood within a sheaf-theoretical framework, just as supermanifolds can, but with subtle differences. In this paper, we examine the notion of a Riemannian Z2n-manifold, i.e., a Z2n-manifold equipped with a Riemannian metric that may carry non-zero Z2n-degree. We show that the basic notions and tenets of Riemannian geometry directly generalize to the setting of Z2n-geometry. For example, the Fundamental Theorem holds in this higher graded setting. We point out the similarities and differences with Riemannian supergeometry.


2018 ◽  
Vol 24 (3) ◽  
pp. 1075-1105
Author(s):  
Andrei Agrachev ◽  
Ugo Boscain ◽  
Robert Neel ◽  
Luca Rizzi

We relate some constructions of stochastic analysis to differential geometry, via random walk approximations. We consider walks on both Riemannian and sub-Riemannian manifolds in which the steps consist of travel along either geodesics or integral curves associated to orthonormal frames, and we give particular attention to walks where the choice of step is influenced by a volume on the manifold. A primary motivation is to explore how one can pass, in the parabolic scaling limit, from geodesics, orthonormal frames, and/or volumes to diffusions, and hence their infinitesimal generators, on sub-Riemannian manifolds, which is interesting in light of the fact that there is no completely canonical notion of sub-Laplacian on a general sub-Riemannian manifold. However, even in the Riemannian case, this random walk approach illuminates the geometric significance of Ito and Stratonovich stochastic differential equations as well as the role played by the volume.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450041
Author(s):  
Adriano Pisante ◽  
Fabio Punzo

We prove convergence of solutions to the parabolic Allen–Cahn equation to Brakke's motion by mean curvature in Riemannian manifolds with Ricci curvature bounded from below. Our results hold for a general class of initial conditions and extend previous results from [T. Ilmanen, Convergence of the Allen–Cahn equation to the Brakke's motion by mean curvature, J. Differential Geom. 31 (1993) 417–461] even in Euclidean space. We show that a sequence of measures, associated to energy density of solutions of the parabolic Allen–Cahn equation, converges in the limit to a family of rectifiable Radon measures, which evolves by mean curvature flow in the sense of Brakke. A key role is played by nonpositivity of the limiting energy discrepancy and a local almost monotonicity formula (a weak counterpart of Huisken's monotonicity formula) proved in [Allen–Cahn approximation of mean curvature flow in Riemannian manifolds, I, uniform estimates, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.; arXiv:1308.0569], to get various density bounds for the limiting measures.


Sign in / Sign up

Export Citation Format

Share Document