Ambiguity: aspects of the wave–particle duality

1997 ◽  
Vol 30 (3) ◽  
pp. 375-385 ◽  
Author(s):  
BARBARA K. STEPANSKY

As has become evident from historical studies, science does not proceed in the coherent and predictable way that basic science texts would have us believe. I will argue that an excellent counter-example is an episode from the historical development of quantum mechanics in which the incompatibility of the particle and the wave representations of the electron and light were destined to be encompassed by two mathematically equivalent, but conceptually quite different theories.I shall argue that the appearance of two such different, yet equivalent, quantum theories was not surprising at all and I claim even predictable. As Einstein himself wrote in 1909: ‘It is my opinion that the next phase in the development of theoretical physics will bring us a theory of light that can be interpreted as a kind of fusion of the wave and the [particle] theory.’ Certainly, the interpretative content of Werner Heisenberg's and Erwin Schrödinger's theories could not have been more different. By mid-1926, the theoretical foundations had been laid for a scientific and emotional battleground between the particle and the wave. I suggest that an important element in the debate was not the incompatibility itself but actually coming to terms with ambiguity in science. For, in the end, ambiguous and vague interpretations of the same phenomena became part of science, where science was supposed to give a clear and unambiguous description of nature.

2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


1999 ◽  
Vol 54 (1) ◽  
pp. 11-32 ◽  
Author(s):  
Berthold-Georg Englert

Abstract Two-way interferometers with which-way detectors are not only of importance in physical research, they are also a useful teaching device. A number of basic issues can be illustrated and discussed, even at the level of undergraduate teaching. Among these issues are: the physical meaning of a state vector; entangled systems; Einstein-Podolsky-Rosen correlations; statistical operators and the as-if realities associated with them; quantum erasure; Schrödinger's cat; and, finally, wave-particle duality.


Author(s):  
Thomas C Andersen

Some physicists surmise that gravity lies outside of quantum mechanics. Thus theories like the standard semiclassical theory of quantum to gravity coupling (that of Rosenfeld and Møller) are possible real models of interaction, rather than a mere approximation of a theory of quantum gravity. Unfortunately, semiclassical gravity creates inconsistencies such as superluminal communication. Alternatives by authors such as Diósi, Martin, Penrose, and Wang often use the term 'stochastic' to set themselves apart from the standard semiclassical theory. These theories couple to fluctuations caused by for instance continuous spontaneous localization, hence the term 'stochastic'. This paper looks at stochastic gravity in the framework of a class of emergent or ontological quantum theories, such as those by Bohm, Cetto, and de Broglie. It is found that much or all of the trouble in connecting gravity with a microscopic system falls away, as Einstein's general relativity is free to react directly with the microscopic beables. The resulting continuous gravitational wave radiation by atomic and nuclear systems does not, in contrast to Einstein's speculation, cause catastrophic problems. The small amount of energy exchanged by gravitational waves may have measurable experimental consequences. A very recent experiment by Vinante et al. performed on a small cantilever at mK temperatures shows a surprising non-thermal noise component, the magnitude of which is consistent with the stochastic gravity coupling explored here.


2019 ◽  
Vol 2 (2) ◽  

Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown.


Author(s):  
Wang Xinye

The Wave-Particle Duality is a basic property of microscopic particles. As a basic concept of quantum mechanics, the wave-particle duality theory from elementary particles to big molecules had been verified by lots of experiments. Different from electromagnetic wave, the matter wave’s propagation is not only fast but also adjustable. According to the special relativity theory, the group velocity with which the overall envelope shape of the wave, namely the related particle’s propagation and information convey speed is changeable with its energy and related wavelength, among which only the energy exceeds over the minimum value, the propagation can be starting and the velocity is not allowed to surpass the maximum value i.e. the light speed in vacuum. Take electron as an example, if the free electron beam gains energy higher than around 8.187×10ˉᴵ⁴J and the related wavelength is shorter than around 5.316×10ˉ³nm, the matter wave with information can start to propagate.  


Mott, Sir Nevill. Born Leeds 1905. Studied theoretical physics under R. H. Fowler in Cambridge, in Copenhagen under Niels Bohr and in Gottingen. Professor of Theoretical Physics in Bristol 1933-54, and Cavendish Professor of Physics, Cambridge 1954-71. Nobel Prize for Physics 1977. Author of several books and research papers on application of quantum mechanics to atomic collisions and since 1933 on problems of solid state science


Author(s):  
Sönke Johnsen

This concluding chapter explains that the modern theory of light falls within the field of quantum mechanics. At first glance, quantum mechanics does not seem that strange—its name is based on the fact that light comes in units and that electrons have discrete energy states. It also includes the uncertainty principle, which states that one cannot know certain pairs of physical properties with perfect precision. Moreover, quantum mechanics involves the wave-particle duality of photons. The chapter then explores two of the most unusual aspects of quantum mechanics: two-slit interference and quantum entanglement. Both violate the most fundamental notions about how the world works.


Author(s):  
Mohammed Nasser Al-Suqri ◽  
Salim Said AlKindi

The concept of interdisciplinarity has a long history but interpretations of this term and the importance of interdisciplinarity in research and education have varied over time. This chapter traces the theoretical understanding and historical development of interdisciplinarity to provide background and context for the book. First it examines the ways in which interdisciplinarity and similar phenomena have been conceptualized in the literature. A roughly chronological account of the main theoretical and empirical developments in interdisciplinarity is then set out, divided into three main periods dating from the early 20th century to the present day.


2021 ◽  
pp. 320-342
Author(s):  
Valia Allori

Quantum mechanics is a groundbreaking theory: it not only is extraordinarily empirically adequate but also is claimed to having shattered the classical paradigm of understanding the observer-observed distinction as well as the part-whole relation. This, together with other quantum features, has been taken to suggest that quantum theory can help one understand the mind-body relation in a unique way, in particular to solve the hard problem of consciousness along the lines of panpsychism. In this chapter, after having briefly presented panpsychism, Valia Allori discusses the main features of quantum theories and the way in which the main quantum theories of consciousness use them to account for conscious experience.


Sign in / Sign up

Export Citation Format

Share Document