The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition

2009 ◽  
Vol 103 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Harri Mäkivuokko ◽  
Kirsti Tiihonen ◽  
Soile Tynkkynen ◽  
Lars Paulin ◽  
Nina Rautonen

Ageing has been suggested to cause changes in the intestinal microbial community. In the present study, the microbiota of a previously well-defined group of elderly subjects aged between 70 and 85 years, both non-steroidal anti-inflammatory drugs (NSAID) users (n9) and non-users (n9), were further compared with young adults (n14) with a mean age of 28 years, by two DNA-based techniques: percentage guanine+cytosine (%G+C) profiling and 16S rDNA sequencing. Remarkable changes in microbiota were described with both methods: compared with young adults a significant reduction in overall numbers of microbes in both elderly groups was measured. Moreover, the total number of microbes in elderly NSAID users was higher than in elderly without NSAID. In 16S rDNA sequencing, shifts in all major microbial phyla, such as lower numbers of Firmicutes and an increase in numbers of Bacteroidetes in the elderly were monitored. On the genus level an interesting link between reductions in the proportion of known butyrate producers belonging toClostridiumcluster XIVa, such asRoseburiaandRuminococcus, could be demonstrated in the elderly. Moreover, in the Actinobacteria group, lower numbers ofCollinsellaspp. were evident in the elderly subjects with NSAID compared both with young adults and the elderly without NSAID, suggesting that the use of NSAID along with age may also influence the composition of intestinal microbiota. Furthermore, relatively high numbers ofLactobacillusappeared only in the elderly subjects without NSAID. In general, the lowered numbers of microbial members in the major phyla, Firmicutes, together with changes in the epithelial layer functions can have a significant effect on the colon health of the elderly.

2008 ◽  
Vol 100 (1) ◽  
pp. 130-137 ◽  
Author(s):  
Kirsti Tiihonen ◽  
Soile Tynkkynen ◽  
Arthur Ouwehand ◽  
Terhi Ahlroos ◽  
Nina Rautonen

Elderly individuals are more susceptible to gastrointestinal problems such as constipation than young adults. Furthermore, the common use of non-steroidal anti-inflammatory drugs (NSAID) among the elderly is known to further increase such gastrointestinal ailments. To describe the specific changes in elderly, intestinal microbes, their metabolites and immune markers were measured from faecal samples obtained from fifty-five elderly individuals (aged 68–88 years), using either NSAID or not, and fourteen young adults (aged 21–39 years). The faecal DM content increased with age but was significantly lower among the elderly NSAID users. The microbial metabolism was especially influenced by NSAID use and/or ageing, although fewer changes were observed in the composition of the microbial community, whilst the level of aerobes was increased in the elderly and the level ofClostridium coccoides–Eubacterium rectalereduced in the elderly NSAID users as compared with young adults. An increase in the concentrations of some branched SCFA andl-lactate but a decrease in some major SCFA concentrations were observed. Evidently, the decreased defecation frequency in the elderly directed colonic fermentation toward an unfavourable microbial metabolism but this was partially offset by the use of NSAID. Irrespective of the use of NSAID, the elderly subjects had significantly lower concentrations of faecal PGE2than the young adults, reflecting possibly a reduced immune response. According to the present study more attention should be paid to the development of dietary products that seek to enhance bowel function, saccharolytic fermentation and immune stimulation in the elderly population.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhenhua Wang ◽  
Zhaoling Cai ◽  
Markus W. Ferrari ◽  
Yilong Liu ◽  
Chengyi Li ◽  
...  

Objective. Chronic heart failure (CHF) refers to a state of persistent heart failure that can be stable, deteriorated, or decompensated. The mechanism and pathogenesis of myocardial remodeling remain unknown. Based on 16S rDNA sequencing and metabolomics technology, this study analyzed the gut microbiota and serum metabolome in elderly patients with CHF to provide new insights into the microbiota and metabolic phenotypes of CHF. Methods. Blood and fecal samples were collected from 25 elderly patients with CHF and 25 healthy subjects. The expression of inflammatory factors in blood was detected by ELISA. 16S rDNA sequencing was used to analyze the changes in microorganisms in the samples. The changes of small molecular metabolites in serum samples were analyzed by LC-MS/MS. Spearman correlation coefficients were used to analyze the correlation between gut microbiota and serum metabolites. Results. Our results showed that the IL-6, IL-8, and TNF-α levels were significantly increased, and the IL-10 level was significantly decreased in the elderly patients with CHF compared with the healthy subjects. The diversity of the gut microbiota was decreased in the elderly patients with CHF. Moreover, Escherichia Shigella was negatively correlated with biocytin and RIBOFLAVIN. Haemophilus was negatively correlated with alpha-lactose, cellobiose, isomaltose, lactose, melibiose, sucrose, trehalose, and turanose. Klebsiella was positively correlated with bilirubin and ethylsalicylate. Klebsiella was negatively correlated with citramalate, hexanoylcarnitine, inosine, isovalerylcarnitine, methylmalonate, and riboflavin. Conclusion. The gut microbiota is simplified by the disease, and serum small-molecule metabolites evidently change in elderly patients with CHF. Serum and fecal biomarkers could be used for elderly patients with CHF screening.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 372 ◽  
Author(s):  
Xu ◽  
Yin ◽  
Zhang ◽  
Lv ◽  
Yang ◽  
...  

Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the third cause of cancer death in the world, while intestinal microbiota is a community of microbes living in human intestine that can potentially impact human health in many ways. Accumulating evidence suggests that intestinal microbiota, especially that from the intestinal bacteria, play a key role in the CRC development; therefore, identification of bacteria involved in CRC development can provide new targets for the CRC diagnosis, prevention, and treatment. Over the past decade, there have been considerable advances in applying 16S rDNA sequencing data to verify associated intestinal bacteria in CRC patients; however, due to variations of individual and environment factors, these results seem to be inconsistent. In this review, we scrutinized the previous 16S rDNA sequencing data of intestinal bacteria from CRC patients, and identified twelve genera that are specifically enriched in the tumor microenvironment. We have focused on their relationship with the CRC development, and shown that some bacteria could promote CRC development, acting as foes, while others could inhibit CRC development, serving as friends, for human health. Finally, we highlighted their potential applications for the CRC diagnosis, prevention, and treatment.


2018 ◽  
Vol 49 (7) ◽  
pp. 2404-2415 ◽  
Author(s):  
Hsiang-Yi Hsu ◽  
Fang-Chi Chang ◽  
Yu-Bin Wang ◽  
Shu-Hwa Chen ◽  
Ya-Po Lin ◽  
...  

2019 ◽  
Author(s):  
Guimiao Jiang ◽  
Xinhao Zhang ◽  
Weiping Gao ◽  
Peixiang Feng ◽  
Tao Wang ◽  
...  

Abstract Background: With the development of large-scale donkey farming in China, long-distance transportation has become a common practice, and the incidence of intestinal diseases after transportation has increased. Intestinal microbiota is important for health and disease, and whether transportation disturbs donkey intestinal microbiota has not been investigated. This study aims to determine the effects of transportation on the fecal microbiota of healthy donkeys using 16S rDNA sequencing. Results: Fecal samples were collected from the rectum of 12 Dezhou donkeys before and after transportation. Results show that long-distance transportation can induce severe stress in donkeys and result in significantly lower level of bacterial richness index compared with that before transport (p=0.042) without distinct changes in diversity. This marked decrease in specific bacterial richness, such as for Eubacterium, Streptococcus, and Coriobacteriaceae, might be associated with the restricted synthesis of anti-inflammatory cytokines and metabolites, such as short chain fatty acids (SCFAs) that potentially contribute to disease development after the transport. Conclusions: Further studies are required to understand the potential effect of these microbiota changes on the development of donkey intestinal diseases. Preventative and therapeutic measures for donkeys before and after transportation should focus on providing diverse and rich bacterial microbiota and probiotic flora. Keywords: Transport stress, Donkeys, Fecal microbiota, 16S rDNA sequencing


2020 ◽  
Vol 16 ◽  
Author(s):  
Nidhi Srivastava ◽  
Indira P. Sarethy

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238. Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as major reservoir of bio and chemodiversity has yielded good results. Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts. Method: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index. Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel antimicrobial compounds belonging to four major categories- alcohols, alkaloid, esters and peptide. Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.


1996 ◽  
Vol 271 (6) ◽  
pp. E983-E989 ◽  
Author(s):  
S. Sial ◽  
A. R. Coggan ◽  
R. Carroll ◽  
J. Goodwin ◽  
S. Klein

We evaluated the effect of aging on fat and carbohydrate metabolism during moderate intensity exercise. Glycerol, free fatty acid (FFA), and glucose rate of appearance (Ra) in plasma and substrate oxidation were determined during 60 min of cycle ergometer exercise in six elderly (73 +/- 2 yr) and six young adults (26 +/- 2 yr) matched by gender and lean body mass. The elderly group was studied during exercise performed at 56 +/- 3% of maximum oxygen uptake, whereas the young adults were studied during exercise performed at the same absolute and at a similar relative intensity as the elderly subjects. Mean fat oxidation during exercise was 25-35% lower in the elderly subjects than in the young adults exercising at either the same absolute or similar relative intensities (P < 0.05). Mean carbohydrate oxidation in the elderly group was 35% higher than the young adults exercising at the same absolute intensity (P < 0.001) but 40% lower than the young adults exercising at the same relative intensity (P < 0.001). Average FFA Ra in the elderly subjects was 85% higher than in the young adults exercising at the same absolute intensity (P < 0.05) but 35% lower than the young adults exercising at a similar relative intensity (P < 0.05). We conclude that fat oxidation is decreased while carbohydrate oxidation is increased during moderate intensity exercise in elderly men and women. The shift in substrate oxidation was caused by age-related changes in skeletal muscle respiratory capacity because lipolytic rates and FFA availability were not rate limiting in the older subjects.


Sign in / Sign up

Export Citation Format

Share Document