scholarly journals Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets

2014 ◽  
Vol 111 (12) ◽  
pp. 2123-2134 ◽  
Author(s):  
Junhua Shen ◽  
Yan Chen ◽  
Zhisheng Wang ◽  
Anguo Zhou ◽  
Miao He ◽  
...  

The present study was conducted to test the hypothesis that low concentrations of coated ZnO, as a substitute for a high concentration of ZnO (2250 mg Zn/kg), could improve intestinal immunity function and regulate microbiota composition, thus alleviating the incidence of diarrhoea in weaned piglets. A total of eighty-four cross-bred piglets, weaned at an age of 28 (sem 1) d, were allocated randomly, on the basis of average initial body weight (7·72 (sem 0·65) kg), to seven treatment groups as follows: a 250 mg Zn (ZnO)/kg group (low Zn; LZ) and a 2250 mg Zn (ZnO)/kg group (high Zn; HZ) that were offered diets containing ZnO at 250 and 2250 mg Zn/kg, respectively; and five experimental groups in which coated ZnO was added at 250, 380, 570, 760 and 1140 mg Zn/kg basal diet, respectively. The trial lasted 2 weeks. The results indicated that, compared with LZ treatment, supplementation with coated ZnO at 380 or 570 mg Zn/kg reduced (P< 0·05) diarrhoea index, increased (P< 0·05) duodenal villus height and the ratio of villus height:crypt depth, up-regulated (P< 0·05) the gene expression of insulin-like growth factor 1, zonula occludens protein-1, occludin, IL-10 and transforming growth factor β1, and elevated (P< 0·05) secretory IgA concentration in the jejunal mucosa. Microbiota richness and the Shannon diversity index were also decreased (P< 0·05). Furthermore, piglets in the group fed coated ZnO at 380 or 570 mg Zn/kg did not differ from those in the HZ-fed group in relation to the aforementioned parameters. Collectively, a low concentration of coated ZnO (380 or 570 mg Zn/kg) can alleviate the incidence of diarrhoea by promoting intestinal development, protecting the intestinal mucosal barrier from damage, stimulating the mucosal immune system and regulating the microbiota composition.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 738-738
Author(s):  
Yajuan Bai ◽  
Mingwei Zhang

Abstract Objectives This study aimed to explore the effect of longan pulp polysaccharide (LP) on the systemic immunity and intestinal mucosal immunity with immunosuppressive mice. The synthesis processing and secretion of intestinal secretory IgA (SIgA) were investigated. Methods Serum IgA, IgG, IgM and intestinal SIgA were detected by ELISA. Genes involved in the synthesis and secretion of SIgA were detected by Q-PCR and western blot. Results LP increased the thymus index, spleen index, and serum IgA level in cyclophosphamide (CTX)-treated mice. SIgA secretion in intestinal lumen was increased by LP as well. The underlying mechanism comes down to the facts as follows: LP increased intestinal cytokines expression and TGFβRII that is associated with pathways of IgA class switch recombination (CSR). By improving protein expression of mucosal address in cell-adhesion molecule-1 (MAdCAM-1) and integrin α4β7, LP was beneficial to gut homing of IgA + plasma cells. LP increased IgA, polymeric immunoglobulin receptor (pIgR), and secretory component (SC) to fortify the SIgA secretion. Conclusions This study suggested that moderate consumption of LP is helpful for improving systemic immunity and intestinal mucosal immunity via promotion of intestinal SIgA to strengthen the mucosal barrier. Funding Sources This work was supported by the National Key Research Project of China (2018YFC1602105, 2019YFD1002304), Guangdong Provincial Science and Technology Project (2018A050506050), President Foundation of Guangdong Academy of Agricultural Sciences (201812B).


2008 ◽  
Vol 99 (3) ◽  
pp. 449-454 ◽  
Author(s):  
Wai Ling Chow ◽  
Yuan Kun Lee

Fucose is present in foods, and it is a major component of human mucin glycoproteins and glycolipids.l-Fucose can also be found at the terminal position of many cell-surface oligosaccharide ligands that mediate cell-recognition and adhesion-signalling pathways. Mucin fucose can be released through the hydrolytic activity of pathogens and indigenous bacteria, leading to the release of free fucose into the intestinal lumen. The immunomodulating effects of free fucose on intestinal epithelial cells (enterocyte-like Caco-2) were investigated. It was found that the presence ofl-fucose up regulated genes and secretion of their encoded proteins that are involved in both the innate and adaptive immune responses, possibly via the toll-like receptor-2 signalling pathway. These include TNFSF5, TNFSF7, TNF-α, IL12, IL17 and IL18.Besides modulating immune reactions in differentiated Caco-2 cells, fucose induced a set of cytokine genes that are involved in the development and proliferation of immune cells. These include the bone morphogenetic proteins (BMP) BMP2, BMP4, IL5, thrombopoietin and erythropoietin. In addition, the up regulated gene expression of fibroblast growth factor-2 may help to promote epithelial cell restitution in conjunction with the enhanced expression of transforming growth factor-β mRNA. Since the exogenous fucose was not metabolised by the differentiated Caco-2 cells as a carbon source, the reactions elicited were suggested to be a result of the direct interaction of fucose and differentiated Caco-2 cells. The presence of free fucose may signal the invasion of mucin-hydrolysing microbial cells and breakage of the mucosal barrier. The intestinal epithelial cells respond by up regulation and secretion of cytokines, pre-empting the actual invasion of pathogens.


2021 ◽  
Vol 22 (11) ◽  
pp. 5822
Author(s):  
Cecilia Fernández-Ponce ◽  
Noelia Geribaldi-Doldán ◽  
Ismael Sánchez-Gomar ◽  
Roberto Navarro Quiroz ◽  
Linda Atencio Ibarra ◽  
...  

Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.


2005 ◽  
Vol 173 (4S) ◽  
pp. 159-159
Author(s):  
Wun-Jae Kim ◽  
ChangYi Quan ◽  
Pil-Du Jeoung ◽  
Eun-Jung Kim ◽  
Ji-Yeon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document