Prediction of temperatures in cattle dung for estimating development times of coprophilous organisms

1988 ◽  
Vol 78 (2) ◽  
pp. 235-240 ◽  
Author(s):  
J. N. Matthiessen ◽  
M. J. Palmer

AbstractIn studies in Western Australia, temperatures in air and one- and two-litre pads of cattle dung set out weekly and ranging from one to 20 days old were measured hourly for 438 days over all seasons, producing 1437 day x dung-pad observations. Daily maximum temperatures (and hence thermal accumulation) in cattle dung pads could not be accurately predicted using meteorological data alone. An accurate predictor of daily maximum dung temperature, using multiple regression analysis, required measurement of the following factors: maximum air temperature, hours of sunshine, rainfall, a seasonal factor (the day number derived from a linear interpolation of day number from day 0 at the winter solstice to day 182 at the preceding and following summer solstices) and a dung-pad age-specific intercept term, giving an equation that explained a 91·4% of the variation in maximum dung temperature. Daily maximum temperature in two-litre dung pads was 0·6°C cooler than in one-litre pads. Daily minimum dung temperature equalled minimum air temperature, and daily minimum dung temperatures occurred at 05.00 h and maximum temperatures at 14.00 h for one-litre and 14.30 h for two-litre pads. Thus, thermal summation in a dung pad above any threshold temperature can be computed using a skewed sine curve fitted to daily minimum air temperature and the calculated maximum dung temperature.

2011 ◽  
Vol 50 (8) ◽  
pp. 1654-1665 ◽  
Author(s):  
Ron F. Hopkinson ◽  
Daniel W. McKenney ◽  
Ewa J. Milewska ◽  
Michael F. Hutchinson ◽  
Pia Papadopol ◽  
...  

AbstractOn 1 July 1961, the climatological day was redefined to end at 0600 UTC at all principal climate stations in Canada. Prior to that, the climatological day at principal stations ended at 1200 UTC for maximum temperature and precipitation and 0000 UTC for minimum temperature and was similar to the climatological day at ordinary stations. Hutchinson et al. reported occasional larger-than-expected residuals at 50 withheld stations when the Australian National University Spline (ANUSPLIN) interpolation scheme was applied to daily data for 1961–2003, and it was suggested that these larger residuals were in part due to the existence of different climatological days. In this study, daily minimum and maximum temperatures at principal stations were estimated using hourly temperatures for the same climatological day as local ordinary climate stations for the period 1953–2007. Daily precipitation was estimated at principal stations using synoptic precipitation data for the climatological day ending at 1200 UTC, which, for much of the country, was close to the time of the morning observation at ordinary climate stations. At withheld principal stations, the climatological-day adjustments led to the virtual elimination of large residuals in maximum and minimum temperature and a marked reduction in precipitation residuals. Across all 50 withheld stations the climatological day adjustments led to significant reductions, by around 12% for daily maximum temperature, 15% for daily minimum temperature, and 22% for precipitation, in the residuals reported by Hutchinson et al.


Geografie ◽  
2008 ◽  
Vol 113 (4) ◽  
pp. 372-382
Author(s):  
Zbigniew W. Kundzewicz ◽  
Damian Józefczyk

This paper examines temperature-related climate extremes in the unique long-term gapfree record at the Secular Meteorological Station in Potsdam. Increasing tendencies in daily minimum temperature in winter and daily maximum temperature in summer, as well as monthly means of daily minimum temperatures in winter months and of daily maximum temperatures in summer months are illustrated. Also the numbers of hot days and of summer days (with maximum daily temperature exceeding 30 °C and 25 °C, respectively) have been increasing. In agreement with warming of winter minimum temperatures, the numbers of frost days (with minimum daily temperature below 0 °C) and of ice days (with maximum daily temperature below 0 °C) have been decreasing. However, low correlation coefficient and huge scatter illustrate strong natural variability, so that the occurrence of extremes departs from the general underlying tendency.


2019 ◽  
Vol 6 (1) ◽  
pp. e000341 ◽  
Author(s):  
Genki Arikawa ◽  
Yoshinori Fujii ◽  
Maiku Abe ◽  
Ngan Thi Mai ◽  
Shuya Mitoma ◽  
...  

Highly pathogenic avian influenza (HPAI) outbreaks engender a severe economic impact on the poultry industry and public health. Migratory waterfowl are considered the natural hosts of HPAI virus, and HPAI viruses are known to be transmitted over long distances during seasonal bird migration. Bird migration is greatly affected by the weather. Many studies have shown the relationship between either autumn or spring bird migration and climate. However, few studies have shown the relationship between annual bird migration and annual weather. This study aimed to establish a model for the number of migratory waterfowl involved in HPAI virus transmission based on meteorological data. From 136 species of waterfowl that were observed at Futatsudate in Miyazaki, Japan, from 2008 to 2016, we selected potential high-risk species that could introduce the HPAI virus into Miyazaki and defined them as ‘risky birds’. We also performed cluster analysis to select meteorological factors. We then analysed the meteorological data and the total number of risky birds using a generalised linear mixed model. We selected 10 species as risky birds: Mallard (Anas platyrhynchos), Northern pintail (Anas acuta), Eurasian wigeon (Anas penelope), Eurasian teal (Anas crecca), Common pochard (Aythya ferina), Eurasian coot (Fulica atra), Northern shoveler (Anas clypeata), Common shelduck (Tadorna tadorna), Tufted duck (Aythya fuligula) and Herring gull (Larus argentatus). We succeeded in clustering 35 meteorological factors into four clusters and identified three meteorological factors associated with their migration: (1) the average daily maximum temperature; (2) the mean value of global solar radiation and (3) the maximum daily precipitation. We thus demonstrated the relationship between the number of risky birds and meteorological data. The dynamics of migratory waterfowl was relevant to the risk of an HPAI outbreak, and our data could contribute to cost and time savings in strengthening preventive measures against epidemics.


2004 ◽  
Vol 55 (8) ◽  
pp. 737 ◽  
Author(s):  
J. Christopher Rutherford ◽  
Nicholas A. Marsh ◽  
Peter M. Davies ◽  
Stuart E. Bunn

Summer field observations in five 2nd order streams (width 1–2 m, depth 5–15 cm, velocity 5–10 cm s–1) in Western Australia and south-east Queensland showed that daily maximum temperatures changed by ±4°C over distances of 600–960 m (travel time 2–3 h) immediately downstream from 40–70% step changes in riparian shade. There was a strong linear relationship between the rate of change of daily maximum temperature and the change of shade such that downstream from a 100% change of shade the heating/cooling rates are ±4°C h–1 and ±10°C km–1 (upper bound ±6°C h–1 and ±15°C km–1) respectively. These high rates only apply over short distances and travel times because downstream water temperatures adjust to the new level of shade and reach a dynamic equilibrium. Shade was too patchy in the study streams to measure how long water takes to reach equilibrium, however, using an existing computer model, we estimate that this occurs after ~1200 m (travel time 4 h). Further modelling work is desirable to predict equilibrium temperatures under given meteorological, flow and shade conditions. Nevertheless, landowners and regulators can use this information to determine whether the presence/absence of certain lengths of bankside shade are likely to cause desirable/undesirable temperature decreases/increases.


2011 ◽  
Vol 24 (3) ◽  
pp. 881-892 ◽  
Author(s):  
Francis W. Zwiers ◽  
Xuebin Zhang ◽  
Yang Feng

Abstract Observed 1961–2000 annual extreme temperatures, namely annual maximum daily maximum (TXx) and minimum (TNx) temperatures and annual minimum daily maximum (TXn) and minimum (TNn) temperatures, are compared with those from climate simulations of multiple model ensembles with historical anthropogenic (ANT) forcing and with combined anthropogenic and natural external forcings (ALL) at both global and regional scales using a technique that allows changes in long return period extreme temperatures to be inferred. Generalized extreme value (GEV) distributions are fitted to the observed extreme temperatures using a time-evolving pattern of location parameters obtained from model-simulated extreme temperatures under ANT or ALL forcing. Evaluation of the parameters of the fitted GEV distributions shows that both ANT and ALL influence can be detected in TNx, TNn, TXn, and TXx at the global scale over the land areas for which there are observations, and also regionally over many large land areas, with detection in more regions in TNx. Therefore, it is concluded that the influence of anthropogenic forcing has had a detectable influence on extreme temperatures that have impacts on human society and natural systems at global and regional scales. External influence is estimated to have resulted in large changes in the likelihood of extreme annual maximum and minimum daily temperatures. Globally, waiting times for extreme annual minimum daily minimum and daily maximum temperature events that were expected to recur once every 20 yr in the 1960s are now estimated to exceed 35 and 30 yr, respectively. In contrast, waiting times for circa 1960s 20-yr extremes of annual maximum daily minimum and daily maximum temperatures are estimated to have decreased to fewer than 10 and 15 yr, respectively.


2008 ◽  
Vol 14 (1-2.) ◽  
Author(s):  
L. Lakatos ◽  
T. Szabó ◽  
S. Zhongfu ◽  
Y. Wang ◽  
J. Racskó ◽  
...  

The trees observed are grown at Ofeherto, Eastern Hungary in the plantation of an assortment (gene bank) with 586 apple cultivars. Each of the cultivars were observed as for their dates of subsequent phenophases, the beginning of bloom, main bloom and the end of bloom over a period between 1984 and 2001. during this period the meteorological data-base keeps the following variables: daily means of temperature (°C), daily maximum temperature (°C), daily minimum temperature (°C), daily precipitation sums (mm), daily sums of sunny hours, daily means of the differences between the day-time and night-time temperatures (°C), average differences between temperatures of successive daily means (°C). Between the 90th and 147th day of the year over the 18 years of observation. The early blooming cultivars start blooming at 10-21April. The cultivars of intermediate bloom start at the interval 20 April to 3 May, whereas the late blooming group start at 2-10 May. Among the meteorological variables of the former autumnal and hibernal periods, the hibernal maxima were the most active factor influencing the start of bloom in the subsequent spring.


2012 ◽  
Vol 25 (13) ◽  
pp. 4721-4728 ◽  
Author(s):  
C.-H. Ho ◽  
S.-J. Park ◽  
S.-J. Jeong ◽  
J. Kim ◽  
J.-G. Jhun

Abstract The impacts of harvested cropland in the double cropping region (DCR) of the northern China plains (NCP) on the regional climate are examined using surface meteorological data and the satellite-derived normalized difference vegetation index (NDVI) and land surface temperature (LST). The NDVI data are used to distinguish the DCR from the single cropping region (SCR) in the NCP. Notable increases in LST in the period May–June are found in the area identified as the DCR on the basis of the NDVI data. The difference between the mean daily maximum temperature averaged over the DCR and SCR stations peaks at 1.27°C in June. The specific humidity in the DCR is significantly smaller than in the SCR. These results suggest that the enhanced agricultural production by multiple cropping may amplify regional warming and aridity to further modify the regional climate in addition to the global climate change. Results in this study may also be used as a quantitative observed reference state of the crop/vegetation effects for future climate modeling studies.


Author(s):  
Zoe E. Petropoulos ◽  
Oriana Ramirez-Rubio ◽  
Madeleine K. Scammell ◽  
Rebecca L. Laws ◽  
Damaris Lopez-Pilarte ◽  
...  

An ongoing epidemic of chronic kidney disease of uncertain etiology (CKDu) afflicts large parts of Central America and is hypothesized to be linked to heat stress at work. Mortality rates from CKDu appear to have increased dramatically since the 1970s. To explore this relationship, we assessed trends in maximum and minimum temperatures during harvest months between 1973 and 2014 as well as in the number of days during the harvest season for which the maximum temperature surpassed 35 °C. Data were collected at a weather station at a Nicaraguan sugar company where large numbers of workers have been affected by CKDu. Monthly averages of the daily maximum temperatures between 1996 and 2014 were also compared to concurrent weather data from eight Automated Surface Observing System Network weather stations across Nicaragua. Our objectives were to assess changes in temperature across harvest seasons, estimate the number of days that workers were at risk of heat-related illness and compare daily maximum temperatures across various sites in Nicaragua. The monthly average daily maximum temperature during the harvest season increased by 0.7 °C per decade between 1973 and 1990. The number of days per harvest season with a maximum temperature over 35 °C increased by approximately five days per year between 1974 and 1990, from 32 days to 114 days. Between 1991 and 2013, the number of harvest days with a maximum temperature over 35 °C decreased by two days per year, and the monthly average daily maximum temperature decreased by 0.3 °C per decade. Comparisons with weather stations across Nicaragua demonstrate that this company is located in one of the consistently hottest regions of the country.


2008 ◽  
Vol 23 (2) ◽  
pp. 270-289 ◽  
Author(s):  
Roman Krzysztofowicz ◽  
W. Britt Evans

Abstract The Bayesian processor of forecast (BPF) is developed for a continuous predictand. Its purpose is to process a deterministic forecast (a point estimate of the predictand) into a probabilistic forecast (a distribution function, a density function, and a quantile function). The quantification of uncertainty is accomplished via Bayes theorem by extracting and fusing two kinds of information from two different sources: (i) a long sample of the predictand from the National Climatic Data Center, and (ii) a short sample of the official National Weather Service forecast from the National Digital Forecast Database. The official forecast is deterministic and hence deficient: it contains no information about uncertainty. The BPF remedies this deficiency by outputting the complete and well-calibrated characterization of uncertainty needed by decision makers and information providers. The BPF comes furnished with (i) the meta-Gaussian model, which fits meteorological data well as it allows all forms of marginal distribution functions, and nonlinear and heteroscedastic dependence structures, and (ii) the statistical procedures for estimation of parameters from asymmetric samples and for coping with nonstationarities in the predictand and the forecast due to the annual cycle and the lead time. A comprehensive illustration of the BPF is reported for forecasts of the daily maximum temperature issued with lead times of 1, 4, and 7 days for three stations in two seasons (cool and warm).


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Francisco Navarro-Serrano ◽  
Juan Ignacio López-Moreno ◽  
Cesar Azorin-Molina ◽  
Esteban Alonso-González ◽  
Marina Aznarez-Balta ◽  
...  

Air temperature changes as a function of elevation were analyzed in a valley of the Spanish Pyrenees. We analyzed insolation, topography and meteorological conditions in order to understand how complex topoclimatic environments develop. Clustering techniques were used to define vertical patterns of air temperature covering more than 1000 m of vertical elevation change. Ten locations from the bottom of the valley to the summits were monitored from September 2016 to June 2019. The results show that (i) night-time lapse rates were between −4 and −2 °C km−1, while in the daytime they were from −6 to −4 °C km−1, due to temperature inversions and topography. Daily maximum temperature lapse rates were steeper from March to July, and daily minimum temperatures were weaker from June to August, and in December. (ii) Different insolation exposure within and between the two analyzed slopes strongly influenced diurnal air temperatures, creating deviations from the general lapse rates. (iii) Usually, two cluster patterns were found (i.e., weak and steep), which were associated with stable and unstable weather conditions, respectively, in addition to high-low atmospheric pressure and low-high relative humidity. The results will have direct applications in disciplines that depend on air temperature estimations (e.g., snow studies, water resources and sky tourism, among others).


Sign in / Sign up

Export Citation Format

Share Document