Sampling Anopheles arabiensis, A. gambiae sensu lato and A. funestus (Diptera: Culicidae) with CDC light-traps near a rice irrigation area and a sugarcane belt in western Kenya

1994 ◽  
Vol 84 (3) ◽  
pp. 319-324 ◽  
Author(s):  
A.K. Githeko ◽  
M.W. Service ◽  
C.M. Mbogo ◽  
F.A. Atieli ◽  
F.O. Juma

AbstractCDC (Communicable Disease Center) light-traps were compared with human-bait collections as an alternative method for sampling malaria vectors in two villages of western Kenya. The numbers of Anopheles funestus Giles and Anopheles gambiae sensu lato Giles in CDC light-trap collections were significantly correlated to the numbers caught in human-bait collections, but in Anopheles arabiensis Patton the two collections were not significantly correlated. Most of the female vectors collected in the traps were unfed. Parity of A. arabiensis collected in CDC light-traps (44.3%) was significantly lower than the rate obtained from females caught on human-bait (54.5%). Although CDC light-traps provide a cheap and convenient method for collecting vectors, further studies should nevertheless be undertaken to determine the influence of species-specific variation in the sizes and age-structure of collections because such variations can affect the epidemiological interpretation of the data.

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e22574 ◽  
Author(s):  
Hitoshi Kawada ◽  
Gabriel O. Dida ◽  
Kazunori Ohashi ◽  
Osamu Komagata ◽  
Shinji Kasai ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2016 ◽  
Author(s):  
Jacques D Charlwood

Background: With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6oC in the cool season to a daytime maximum of 35oC in the hot season. Results: Mean daily air temperatures varied from 34o C to 20oC and soil temperatures varied from 26 o C to 12 o C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6043 light-trap collections, 161, 466 in 7397 exit collections and 16, 995 in 1315 resting collections. The equivalent numbers for An. gambiae s.l. are 72, 475 in light-traps, 33, 868 in exit collections and 5, 333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28oC. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. Conclusions: Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28oC and above. These differences may influence the distribution of the vectors as the planet warms.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Souleymane Doucoure ◽  
Omar Thiaw ◽  
Amélé N. Wotodjo ◽  
Charles Bouganali ◽  
Nafisatou Diagne ◽  
...  

1998 ◽  
Vol 88 (5) ◽  
pp. 561-566 ◽  
Author(s):  
W. Takken ◽  
J.D. Charlwood ◽  
P.F. Billingsley ◽  
G. Gort

AbstractIn a rural area of southeastern Tanzania, studies were undertaken on the dispersal and survival of Anopheles funestus Giles and A. gambiae Giles s.l. during the rainy season. Blood fed, resting mosquitoes were collected indoors, marked with fluorescent powder and released on the same day from two different sites in the study area. For two weeks indoor resting mosquitoes were collected from 11 houses in the release area. Additional collections were made with a light trap from a sentinel house in the centre of the study area. Anopheles funestus was more abundant than A. gambiae s.l. Of 4262 A. funestus and 645 A. gambiae s.l. released, 4.3% and 7.4%, respectively, were recaptured. Dispersal of mosquitoes was not random: one of three areas was favoured significantly more than the other areas, as shown by the recapture and movement rates of marked mosquitoes. Based on the regression of the recapture rate, estimated daily survival rates of A. funestus and A. gambiae s.l. were 0.63 and 0.78, respectively. These were significantly different. The differences in dispersal and survival rates between the two species are discussed in view of local topography and species-specific characteristics.


2016 ◽  
Author(s):  
Jacques D Charlwood

Background: With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6oC in the cool season to a daytime maximum of 35oC in the hot season. Results: Mean daily air temperatures varied from 34o C to 20oC and soil temperatures varied from 26 o C to 12 o C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6043 light-trap collections, 161, 466 in 7397 exit collections and 16, 995 in 1315 resting collections. The equivalent numbers for An. gambiae s.l. are 72, 475 in light-traps, 33, 868 in exit collections and 5, 333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28oC. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. Conclusions: Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28oC and above. These differences may influence the distribution of the vectors as the planet warms.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Polius G. Pinda ◽  
Claudia Eichenberger ◽  
Halfan S. Ngowo ◽  
Dickson S. Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. Methods The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. Findings At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. Conclusions In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


Sign in / Sign up

Export Citation Format

Share Document