Floral Initiation and Flowering of Coffea arabica L. in Kenya

1970 ◽  
Vol 6 (2) ◽  
pp. 157-170 ◽  
Author(s):  
T. M. Wormer ◽  
J. Gituanja

SUMMARYIn Kenya, coffee growing east of the Great Rift Valley has its main flowering either in February–March or in October–November. These flowerings are mainly initiated from approximately August to December and June to September, respectively. Changes from an early to a late flowering rhythm and vice versa can be caused by (a) pruning, (b) the condition of the tree, and (c) the weather pattern, but more information is needed for a complete understanding of this problem.

Author(s):  
A. Delgado-Alvarado

Objetivo: Analizar el proceso de producción y comercialización de café en la comunidad del Cerro Cuate, Iliatenco, en la región de la Montaña de Guerrero, México.Diseño/Metodología/aproximación: el trabajo se realizó por; 1) investigación documental), 2) selección del área de estudio, 3) Entrevista estructurada con preguntas abiertas a 22 cafeticultores, soportada con la técnica de encuesta seccional y la herramienta de cédulas de entrevistas, y 4) análisis de la información. El tamaño de muestra se definió por el método de muestreo por conveniencia, y la selección de las unidades de análisis por la técnica bola de nieve. Resultados: El sistema de producción de café que predominó fue el sistema rústico de montaña, intercalado con plátano y frutales. La máxima productividad de las plantaciones se alcanza de 5.5 a 7.5años de edad, la renovación de plantas la hacen a los 12 años. El rendimiento de café fue de 3.7 kg por planta por año. La producción del café la realizan principalmente hombres (77.3%), entre 56 y 70años de edad. La venta se realiza en la presentación de café capulín a granel a intermediarios, a la ARIC, a CAFECO, a la Unión de Ejidos y a la Organización Mixtrui.Limitaciones del estudio/implicaciones: Se da una propuesta de mejora para favorecer el proceso de producción, beneficio y comercialización del café.Hallazgos/conclusiones: Coffea arabica es el principal café que se cultiva, con las variedades Typica, Caturra, Mundo Novo, Garnica y Bourbón. Los factores que limitan su producción y calidad son faltade planeación en manejo del cultivo y no contar con asesoría técnica.


2017 ◽  
Vol 12 (1) ◽  
pp. 69 ◽  
Author(s):  
Felipe Santinato ◽  
Renato Adriane Alves Ruas ◽  
Carlos Diego Silva ◽  
Rouverson Pereira Da Silva ◽  
Victor Afonso Reis Gonçalves ◽  
...  

A disposição dos ramos e sobreposição das folhas em plantas de café dificultam a penetração da calda pulverizada. Portanto, para determinar o volume de calda adequado, é importante verificar o estado de enfolhamento da lavoura antes da aplicação. Objetivou-se com este trabalho, avaliar a deposição de caldas de pulverização em lavouras de café aplicadas em diferentes volumes vegetativos. Os tratamentos foram dispostos seguindo esquema de parcelas subdivididas em cada volume vegetativo (5.000; 7.500; 10.000 e 17.500 m<sup>3</sup> ha<sup>-1</sup>). Sendo as parcelas cinco volumes de calda (150, 300, 450, 600 e 750 L ha<sup>-1</sup>) e as subparcelas três posições no dossel do cafeeiro (terço superior, médio e inferior) com quatro repetições. Nos quatro volumes vegetativos estudados, não ocorreu interação significativa (p&gt;0,05) entre o volume aplicado e os diferentes volumes vegetativos. Porém, os volumes vegetativos de 5.000,0 e 17.500,0 m<sup>3</sup> ha<sup>-1</sup> a deposição foi crescente com aumento das vazões, o que pode ser atribuído a densidade foliar. Não foi verificada diferença estatística (p&gt; 0,05), entre as médias de deposição nos diferentes terços (alturas) no dossel das plantas de café, nos volumes vegetativos 5.000,0 m<sup>3 </sup>ha<sup>-1</sup>, 10.000,0 m<sup>3 </sup>ha<sup>-1</sup> e 17.500,0 m<sup>3 </sup>ha<sup>-1</sup>. Contudo, no volume de 7.500,0 m<sup>3 </sup>ha<sup>-1</sup> houve maior deposição no terço mediano em relação ao terço inferior. A deposição é maior à medida que aumenta o volume de calda aplicado. Em plantas com menor densidade foliar, há incremento na deposição. A deposição é maior no terço mediano em relação ao terço inferior.


2016 ◽  
Vol 4 (3) ◽  
pp. 266
Author(s):  
Vinsensia Febrina Sianturi ◽  
Ade Wachjar

<p><em>Kopi merupakan salah satu komoditas perkebunan yang memiliki nilai ekonomi yang cukup tinggi</em><em>. </em><em>Kegiatan magang bertujuan mempelajari teknik budidaya</em><em> </em><em>tanaman</em><em> </em><em>dan</em><em> p</em><em>engelolaan</em><em> </em><em>perkebunan kopi, mempelajari dan menganalisis permasalahan yang dihadapi di lapangan mengenai pengelolaan pemangkasan serta solusi mengatasinya.</em><em> P</em><em>emangkasan </em><em>bertujuan </em><em>agar pohon tetap rendah sehingga mudah perawatannya, </em><em>dan </em><em>membentuk cabang-cabang produksi yang baru.</em><em> </em><em>Kegiatan magang dilaksanakan di Kebun Blawan, Bondowoso, Jawa Timur</em><em>,</em><em> mulai bulan Februari sampai dengan Juni 2014.</em><em> </em><em>Pengumpulan data </em><em>primer diperoleh melalui </em><em>pengamatan dan praktik kerja secara langsung meliputi kegiatan pemeliharaan tanaman yaitu pemangkasan lepas panen (pengamatan cabang-cabang tanaman, tinggi tanaman, jumlah tunas yang tumbuh)</em><em>, sedangkan data sekunder </em><em>diperoleh melalui </em><em>laporan manajemen perusahaan. </em><em>A</em><em>nalisis </em><em>data </em><em>yang dilakukan secara</em><em> deskriptif, rata-rata dan persentase</em><em>. Pemangkasan yang dilakukan</em><em> </em><em>termasuk dalam kategori pemangkasan ringan.</em><em> Tanaman kopi </em><em>yang memiliki kondisi cabang yang merata dan seimbang sangat mempengaruhi </em><em>hasil </em><em>taksasi</em><em> produksi</em><em>.</em><em> Banyak cabang harus dipangkas karena cabang-cabang yang sudah tua dan terserang penyakit. Setelah melakukan pemangkasan, tanaman menghasilkan tunas-tunas baru</em><em>.</em><em></em></p>


Author(s):  
C. Montagnon ◽  
A. Mahyoub ◽  
W. Solano ◽  
F. Sheibani

AbstractWhilst it is established that almost all cultivated coffee (Coffea arabica L.) varieties originated in Yemen after some coffee seeds were introduced into Yemen from neighboring Ethiopia, the actual coffee genetic diversity in Yemen and its significance to the coffee world had never been explored. We observed five genetic clusters. The first cluster, which we named the Ethiopian-Only (EO) cluster, was made up exclusively of the Ethiopian accessions. This cluster was clearly separated from the Yemen and cultivated varieties clusters, hence confirming the genetic distance between wild Ethiopian accessions and coffee cultivated varieties around the world. The second cluster, which we named the SL-17 cluster, was a small cluster of cultivated worldwide varieties and included no Yemen samples. Two other clusters were made up of worldwide varieties and Yemen samples. We named these the Yemen Typica-Bourbon cluster and the Yemen SL-34 cluster. Finally, we observed one cluster that was unique to Yemen and was not related to any known cultivated varieties and not even to any known Ethiopian accession: we name this cluster the New-Yemen cluster. We discuss the consequences of these findings and their potential to pave the way for further comprehensive genetic improvement projects for the identification of major resilience/adaptation and cup quality genes that have been shaped through the domestication process of C. arabica.


2021 ◽  
Vol 13 (2) ◽  
pp. 844
Author(s):  
George Watene ◽  
Lijun Yu ◽  
Yueping Nie ◽  
Jianfeng Zhu ◽  
Thomas Ngigi ◽  
...  

The Kenya Great Rift Valley (KGRV) region unique landscape comprises of mountainous terrain, large valley-floor lakes, and agricultural lands bordered by extensive Arid and Semi-Arid Lands (ASALs). The East Africa (EA) region has received high amounts of rainfall in the recent past as evidenced by the rising lake levels in the GRV lakes. In Kenya, few studies have quantified soil loss at national scales and erosion rates information on these GRV lakes’ regional basins within the ASALs is lacking. This study used the Revised Universal Soil Loss Equation (RUSLE) model to estimate soil erosion rates between 1990 and 2015 in the Great Rift Valley region of Kenya which is approximately 84.5% ASAL. The mean erosion rates for both periods was estimated to be tolerable (6.26 t ha−1 yr−1 and 7.14 t ha−1 yr−1 in 1990 and 2015 respectively) resulting in total soil loss of 116 Mt yr−1 and 132 Mt yr−1 in 1990 and 2015 respectively. Approximately 83% and 81% of the erosive lands in KGRV fell under the low risk category (<10 t ha−1 yr−1) in 1990 and 2015 respectively while about 10% were classified under the top three conservation priority levels in 2015. Lake Nakuru basin had the highest erosion rate net change (4.19 t ha−1 yr−1) among the GRV lake basins with Lake Bogoria-Baringo recording annual soil loss rates >10 t ha−1 yr−1 in both years. The mountainous central parts of the KGRV with Andosol/Nitisols soils and high rainfall experienced a large change of land uses to croplands thus had highest soil loss net change (4.34 t ha−1 yr−1). In both years, forests recorded the lowest annual soil loss rates (<3.0 t ha−1 yr−1) while most of the ASAL districts presented erosion rates (<8 t ha−1 yr−1). Only 34% of all the protected areas were found to have erosion rates <10 t ha−1 yr−1 highlighting the need for effective anti-erosive measures.


2021 ◽  
Vol 281 ◽  
pp. 109934
Author(s):  
Miroslava Rakocevic ◽  
Fabio Takeshi Matsunaga ◽  
Danilo Força Baroni ◽  
Eliemar Campostrini ◽  
Evelyne Costes

Sign in / Sign up

Export Citation Format

Share Document