cup quality
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 2)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
Gustavo A. Figueroa Campos ◽  
Johannes G. K. T. Kruizenga ◽  
Sorel Tchewonpi Sagu ◽  
Steffen Schwarz ◽  
Thomas Homann ◽  
...  

The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma.


2021 ◽  
Vol 37 ◽  
pp. e37072
Author(s):  
Andre Dominghetti Ferreira ◽  
Juliana Costa de Rezende Abrahão ◽  
Gladyston Rodrigues Carvalho ◽  
Alex Mendonça de Carvalho ◽  
Vinicius Teixeira Andrade ◽  
...  

The evaluation of coffee quality in Brazil for commercialization is conducted mainly through sensory analysis, also known as the "cup test", in which professional tasters evaluate and score various attributes. The adoption of chemical methods could complement the sensory classification of beverages, if correlations between these chemical and sensory analyses exist, making classification less subjective. This work aimed to identify the relationships between the chemical and sensorial traits of coffee-beverage quality and to evaluate the use of these traits as criteria for the selection of Bourbon cultivars. Twenty coffee genotypes from the first three harvests across five municipalities of the state of Minas Gerais, Brazil were evaluated. The genotypic values, predicted for each genotype, were used to determine the index based on the sum of ranks from Mulamba and Mock. The genetic correlations among the evaluated traits were also estimated. The presented evaluations were not able to efficiently detect genetic and phenotypic relationships between the chemical and sensorial characteristics of drink quality, but as selection criteria for generation advancement in the beverage quality, it is possible to use these characteristics. Bourbon Amarelo LCJ 9-IAC, Bourbon Amarelo-Procafé, Bourbon Amarelo-Boa Vista, Bourbon Vermelho-São João Batista, and Bourbon Amarelo-Samambaia were the genotypes with the most promising cup quality in the studied regions. Through the selection of these five genotypes, the selection gain was 1.65% for sensory score for beverage quality, when the interaction among the studied environments was removed. The heritability was 92% for improving this trait.


Author(s):  
Joseph Mulindwa ◽  
Archileo Natigo Kaaya ◽  
Lawrence Muganga ◽  
Moses Paga ◽  
Pascal Musoli ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4609
Author(s):  
Panagiota Zakidou ◽  
Fotini Plati ◽  
Anthia Matsakidou ◽  
Evdoxia-Maria Varka ◽  
Georgios Blekas ◽  
...  

In this study, the aroma profile of 10 single origin Arabica coffees originating from eight different growing locations, from Central America to Indonesia, was analyzed using Headspace SPME-GC-MS as the analytical method. Their roasting was performed under temperature–time conditions, customized for each sample to reach specific sensory brew characteristics in an attempt to underline the customization of roast profiles and implementation of separate roastings followed by subsequent blending as a means to tailor cup quality. A total of 138 volatile compounds were identified in all coffee samples, mainly furan (~24–41%) and pyrazine (~25–39%) derivatives, many of which are recognized as coffee key odorants, while the main formation mechanism was the Maillard reaction. Volatile compounds’ composition data were also chemometrically processed using the HCA Heatmap, PCA and HCA aiming to explore if they meet the expected aroma quality attributes and if they can be an indicator of coffee origin. The desired brew characteristics of the samples were satisfactorily captured from the volatile compounds formed, contributing to the aroma potential of each sample. Furthermore, the volatile compounds presented a strong variation with the applied roasting conditions, meaning lighter roasted samples were efficiently differentiated from darker roasted samples, while roasting degree exceeded the geographical origin of the coffee. The coffee samples were distinguished into two groups, with the first two PCs accounting for 73.66% of the total variation, attributed mainly to the presence of higher quantities of furans and pyrazines, as well as to other chemical classes (e.g., dihydrofuranone and phenol derivatives), while HCA confirmed the above results rendering roasting conditions as the underlying criterion for differentiation.


2021 ◽  
Vol 5 ◽  
Author(s):  
Marcelo Ribeiro Malta ◽  
Antonio Carlos Baiao Oliveira ◽  
Gilberto Rodrigues Liska ◽  
Gladyston Rodrigues Carvalho ◽  
Antonio Alves Pereira ◽  
...  

This study aimed to evaluate the cup quality of Coffea arabica elite genotypes submitted to wet processing. C. arabica elite genotypes, which were grouped according to their genealogy: Bourbon, Paraíso Germplasm, and Resistant to Rust. Coffees were sent to wet processing to obtain fully washed coffee. After processing and drying the coffees were subjected to cup quality analysis according to the methodology of the Association of Special Coffees (SCA). To characterize and discriminate the genealogical groups the data were submitted to chemometric analysis, Principal Component Method (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The PCA was effective in presenting an overview of the data, demonstrating the variables that most contributed to the analysis response. However, the PCA was not efficient to group genotypes according to their genealogical origin, based on chemometric data, as it is an unsupervised analysis. Even though most of the samples were classified correctly, the PLS-DA model created has not yet managed to correctly classify the genotypes of the Paraíso germplasm group. The C. arabica elite genotypes evaluated have the potential to produce special coffees, especially on the genotypes Paraíso 2, H493-1-2-10 and UFV-7158 with scores equal to or above 90 points.


2021 ◽  
pp. 35-41
Author(s):  
T.N. Sandeep ◽  
B.B. Channabasamma ◽  
T.N. Gopinandhan ◽  
J.S. Nagaraja

The objective of the work was to study the effect of drying temperature on cup quality of the robusta coffee subjected to mechanical drying in comparison with conventional sun drying. The robusta coffee processed by wet (parchment coffee) and dry (cherry coffee) methods were subjected to drying at different temperature regimes (40 oC, 50 oC and 60 oC) in a rotary mechanical dryer. The results of the study indicated that as the drying temperature increased, the time of drying reduced. Sun drying of parchment coffee took 48 hours (approximately seven days) to attain the desired moisture content of 11-12 per cent, while mechanical drying reduced the drying time to 16 to 24 hours. Similarly, cherry coffee subjected to sun drying took 88 hours (approximately 15 days), while mechanical drying reduced the drying time to 32 to 48 hours. The cup quality rating of coffee dried by different drying methods revealed that sun-dried robusta parchment coffee scored the highest cup rating. As the drying temperature increased, the cup quality ratings decreased. A similar cup quality rating was also observed with cherry coffee. These results indicate a considerable reduction of drying time when coffee beans are dried in a mechanical dryer. However, there is a need to regulate the drying temperature, which otherwise would negatively impact the quality of coffee. The drying temperature should not exceed 40oC for preserving the innate quality of robusta coffee because the high drying rates provoked by high temperatures can cause damage to the coffee quality due to the damage caused to the cell membranes. Overall, mechanical drying is more advantageous to sun drying in-terms of drying hours (indirectly reduces dependency on manpower) and preservation of innate quality of the coffee.


2021 ◽  
Vol 141 ◽  
pp. 110118
Author(s):  
Junior Pastor Pérez-Molina ◽  
Edgard Augusto de Toledo Picoli ◽  
Leonardo Araújo Oliveira ◽  
Bruno Tavares Silva ◽  
Genaína Aparecida de Souza ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0234758
Author(s):  
Chinyere F. Anagbogu ◽  
Jiaqi Zhou ◽  
Festus O. Olasupo ◽  
Mohammed Baba Nitsa ◽  
Diane M. Beckles

Coffee (Coffea spp.) is one of the most popular refreshing beverages globally. Coffee lipid diversity has untapped potential for improving coffee marketability because lipids contribute significantly to both the health benefits and cup quality of coffee. However, in spite of its potential importance, there have not been extensive studies of lipids among C. canephora genotypes. In this study, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC–MS) profiling of lipid molecules was performed for 30 genotypes consisting of 15 cultivated and 15 conserved genotypes of C. canephora in Southwestern Nigeria. We identified nine classes of lipids in the 30 genotypes which belong to the ‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’ group: among these, the most abundant lipid class was the triacylglycerols, followed by the fatty acyls group. Although ‘Niaouli’ diverged from the ‘Kouillou’ and ‘Java Robusta’ genotypes when their lipid profiles were compared, there was greater similarity in their lipid composition by multivariate analysis, compared to that observed when their primary metabolites and especially their secondary metabolite profiles were examined. However, distinctions could be made among genotypes. Members of the fatty acyls group had the greatest power to discriminate among genotypes, however, lipids that were low in abundance e.g. a cholesterol ester (20:3), and phosphotidylethanolamine (34:0) were also helpful to understand the relationships among C. canephora genotypes. The divergent lipid profiles identified among the C. canephora genotypes, correlated with their Single Nucleotide Polymorphism grouping as assessed by genotype-by-sequencing, and will be exploited to improve coffee cup quality.


Sign in / Sign up

Export Citation Format

Share Document