Simulation of the Seed Bank Dynamics of Orobanche crenata Forsk. in some Crop Rotations Common in Northern Syria

1996 ◽  
Vol 32 (4) ◽  
pp. 395-403 ◽  
Author(s):  
H. Schnell ◽  
M. Kunisch ◽  
M. C. Saxena ◽  
J. Sauerborn

SUMMARYSimulations of the dynamics of the seed bank of Orobanche crenata Forsk. under different crop rotations are presented. Rotations studied involved four host species, lentil (Lens culinaris Medik.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.) and woolly-pod vetch (Vicia villosa subsp. dasycarpa (Ten.) Cavill.), and non-host species. Simulation showed that the Orobanche seed bank dynamics in three-course crop rotations would result in a high Orobanche seed population and hence in low yields of the respective crops. Replacing the susceptible by resistant legumes such as woolly-pod vetch in some of the cycles of the rotations would keep the Orobanche infestation at a low level without reducing the proportion of legumes. A three-course crop rotation with faba bean would have to be changed to a 12-coursc rotation in which faba bean was grown every twelfth year but was replaced by woolly-pod vetch or other resistant legumes in seasons 3, 6, 9; 15, 18, 21; and so on. In the three-course rotations with chickpea or lentil, these susceptible legumes would be grown every ninth year but would have to be replaced in seasons 3 and 6; 12 and 15; 21 and 24; and so on, thus changing these three-course rotations into nine-course rotations.

1996 ◽  
Vol 32 (4) ◽  
pp. 395-403
Author(s):  
H. Schnell ◽  
M. Kunisch ◽  
M. C. Saxena ◽  
J. Sauerborn

SUMMARYSimulations of the dynamics of the seed bank of Orobanche crenata Forsk. under different crop rotations are presented. Rotations studied involved four host species, lentil (Lens culinaris Medik.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.) and woolly-pod vetch (Vicia villosa subsp. dasycarpa (Ten.) Cavill.), and non-host species. Simulation showed that the Orobanche seed bank dynamics in three-course crop rotations would result in a high Orobanche seed population and hence in low yields of the respective crops. Replacing the susceptible by resistant legumes such as woolly-pod vetch in some of the cycles of the rotations would keep the Orobanche infestation at a low level without reducing the proportion of legumes. A three-course crop rotation with faba bean would have to be changed to a 12-coursc rotation in which faba bean was grown every twelfth year but was replaced by woolly-pod vetch or other resistant legumes in seasons 3, 6, 9; 15, 18, 21; and so on. In the three-course rotations with chickpea or lentil, these susceptible legumes would be grown every ninth year but would have to be replaced in seasons 3 and 6; 12 and 15; 21 and 24; and so on, thus changing these three-course rotations into nine-course rotations.


2008 ◽  
Vol 30 (2) ◽  
pp. 100-110 ◽  
Author(s):  
Fernanda Costa Maia ◽  
Manoel de Souza Maia ◽  
Renée M. Bekker ◽  
Rogério Previatti Berton ◽  
Leandro Sebastião Caetano

The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds


2021 ◽  
Vol 9 (7) ◽  
pp. 407-421
Author(s):  
Nawal Al-Hajaj

In this study, we reviewed weed seed bank dynamic and main agriculture operations to come up with the weed seed management modeling designed to increase crop productivity by removing weed competition. Weed contributing with 10% loss of total global grain production. Weed seed bank regulate by five demographic processes seedling recruitment and survival, seed production, dispersal and seed survival in soil. The main agriculture operations that interference with weed seed bank are crop rotation and primary tillage. Tillage systems affect weed emergence, management, and seed production; therefore, changing tillage practices changes the composition, vertical distribution, and density of weed seed bank in agricultural soils. Weed species vary in their response to various crop rotations, due to the variability of weed-crop competition in their relative capacity to capture growth–limiting resources. Crop rotations affect weed emergence, management, composition, and density of weed seed bank. Finally, the study suggests elevating crop competitiveness against weeds, through a combination of crop rotation and reduce_ zero tillage, has strong potential to reduce weed-induced yield losses in crop.


1997 ◽  
Vol 77 (2) ◽  
pp. 197-200 ◽  
Author(s):  
A. Matus ◽  
D. A. Derksen ◽  
F. L. Walley ◽  
H. A. Loeppky ◽  
C. van Kessel

Direct seeding into standing stubble and crop diversification are two practices that are becoming widely adopted in western Canada. This study was conducted to determine: i) the influence of zero and conventional tillage on N-fixation in lentil (Lens culinaris Medikus) and pea (Pisum sativum L.), and ii) the effect of cropping history on N-fixation in lentil. Data were obtained from a crop rotation experiment being conducted on a silty clay soil in east-central Saskatchewan, which included six cereal-oilseed-cereal-pulse rotations, each managed using zero and conventional tillage practices. The finding showed that N-fixation was 10% higher by lentil and 31% higher by pea when grown using zero tillage as compared to conventional tillage practices. On average, lentil grown in highly diversified crop rotations fixed 12% more nitrogen than when grown in less diversified crop rotations. Key words: Nitrogen fixation, lentil (Lens culinaris Medikus), pea (Pisum sativum L.), zero tillage, conventional tillage


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 877-887 ◽  
Author(s):  
Ramon G. Leon ◽  
David L. Wright ◽  
James J. Marois

Crop rotation promotes productivity, nutrient cycling, and effective pest management. However, in row-crop systems, rotation is frequently limited to two crops. Adding a third crop, especially a perennial crop, might increase crop-rotation benefits, but concerns about disruption of agricultural and ecological processes preclude grower adoption of a three-crop rotation. The objective of the present research was to determine whether weed seed banks differ between a sod-based rotation (bahiagrass–bahiagrass–peanut–cotton) and a conventional peanut–cotton rotation (peanut–cotton–cotton) and the importance of crop phase in weed seed-bank dynamics in a long-term experiment initiated in 1999 in Florida. Extractable (ESB) and germinable (GSB) seed banks were evaluated at the end of each crop phase in 2012 and 2013, and total weed seed or seedling number, Shannon-Weiner's diversity (H′), richness, and evenness were determined. ESB increased in H′ (36%), richness (29%), and total number of weed seeds (40%) for sod-based compared with conventional rotation, whereas GSB increased 32% in H′, 27% in richness, and 177% in total number of weed seedlings. Crop phase was a determinant factor in the differences between crop rotations. The first year of bahiagrass (B1) exhibited increases in weed seed and seedling number, H′, and richness and had the highest values observed in the sod-based rotation. These increases were transient, and in the second year of bahiagrass (B2), weed numbers and H′ decreased and reached levels equivalent to those in the conventional peanut–cotton rotation. The B1 phase increased the germinable fraction of the seed bank, compared with the other crop phases, but not the total number of weed seeds as determined by ESB. The increases in H′ and richness in bahiagrass phases were mainly due to grass weed species. However, these grass weed species were not associated with peanut and cotton phases of the sod-based rotation. The results of the present study demonstrated that including bahiagrass as a third crop in a peanut–cotton rotation could increase weed community diversity, mainly by favoring increases in richness and diversity, but the structure and characteristics of the rotation would prevent continuous increases in the weed seed bank that could affect the peanut and cotton phases.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Melkamu Degu ◽  
Asmare Melese ◽  
Wondwosen Tena

Crop rotation systems especially dominated by cereals (maize and wheat) are intimately linked to soil properties. The objective of the study was to investigate the effect of crop rotations and conservation practice on selected soil physicochemical properties in northwestern part of Ethiopia. Soil samples (0–20 cm depth) were collected from seven crop rotations with conservation practice and adjacent fields without any conservation measure in three replications. A total of forty-two composite samples were used for analysis by using SAS software. The land rotated with maize-wheat-faba bean exhibited significantly higher mean bulk density (1.06 g/cm3) than the land rotated with other crops (i.e., ranging from 1.02 to 1.04 g/cm3). Mean values of pH (5.34, 4.98, and 5.4), Ex. acidity (2.03, 2.53, and 2.16 cmolc/kg), soil OM (4.53%, 5.12%, and 5.02%), CEC (45.17, 48.03, and 49.47 cmolc/kg), TN (0.23, 0.25, and 0.27%), Av.P (10.21, 7.23, and 7.95 ppm), and C : N ratio (11.18, 11.95, and 10.8) were recorded under rotations with continuous maize, maize-pepper-pepper, and maize-faba bean-pepper, respectively. Mean values of pH (5.34 and 4.97), Av.P (9.51 and 6.53 ppm), CEC (48.3 and 46.87 cmolc/kg), and Ex. acidity (2.5 and 2.85 cmolc/kg) were also recorded under conserved and unconserved farmlands, respectively. Considering the interaction effect of crop rotations by conservation practice, all studied parameters, except bulk density, CEC, and C : N ratio, were significantly (p<0.05) affected. The findings indicate that although continuous maize showed good content of available P and low exchangeable acidity, it will deplete particular nutrients; therefore, maize-pepper-pepper, maize-wheat-faba bean, and maize-faba bean-pepper recorded a slight trend of good values in studied soil physicochemical properties compared to other rotations. A critical study on such type of issue should be carried out over a longer period of time in order to announce detailed understanding about response of soil property to crop rotations to the community.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1367
Author(s):  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Ingė Auželienė ◽  
Vaclovas Bogužas ◽  
Rita Pupalienė ◽  
...  

Equally effective way to achieve sustainable farming and the challenge set by the European Commission on 20 May 2020: proper crop rotation and thus reduction of the quantity of on-farm chemicals. Long-term stationary field experiments were established in 1966 at Vytautas Magnus University Experimental Station (54°53′ N, 23°50′ E). The study was conducted with intensive, three-course, field rotation with row crops, for green manure crop rotations, and rye monoculture as well during the last 5-year period of a 50-year investigation to determine the effect of crop rotation combinations and rye monoculture on weed density and seed bank and grain yield. In cereal crops, weed counting was performed twice: weed density was determined before the application of herbicides, and weed counting was done before the harvest. Weed seedlings were counted, their botanical species were determined, annual and perennial weed number was estimated. Weed seed bank was established before primary tillage in soil. The results obtained confirmed the hypothesis that with climate change and intensive farming, long-term crop rotations are likely to increase crop productivity, reduce weeds and weed seed banks in the soil, and thus contribute to maintaining agroecosystem sustainability. The winter rye 1000 grain weight and yield decreases as weed mass increases showing strong negative correlations: y = 475.56 − 11.93x, r = −0.91, p ≤ 0.05; y = 82.97 −14.82x, r = −0.97, p ≤ 0.01. Reseeding of rye crops leads to a growing prevalence of weeds such as Equisetum arvense L. and Mentha arvensis. Crop structures these days are dominated by cereals, which inevitably increase the spread of weeds, and therefore, the importance of crop rotations increases in the context of intensive farming.


Weed Science ◽  
2014 ◽  
Vol 62 (1) ◽  
pp. 166-176 ◽  
Author(s):  
Andrew J. Garrison ◽  
Adam D. Miller ◽  
Matthew R. Ryan ◽  
Stephen H. Roxburgh ◽  
Katriona Shea

Crop rotation has long been considered one of the simplest and most effective tools for managing weeds. In this paper, we demonstrate how crop rotations can be strategically arranged to harness a novel mechanism of weed suppression: weed-weed competition. Specifically, we consider how crop stacking, or increasing the number of consecutive plantings of a single crop within a rotation, can decrease the size of the weed seed bank, by forcing weeds to compete with each other in similar environments for longer periods of time, while still reaping the traditional benefits of crop rotation. Using an annual plant model, we investigate the theoretical effects of stacked crop rotations on weeds that have different life-history strategies and phenology. Our results show that when weeds compete within a season, stacking can reduce the weed seed bank compared to rotations without stacked crops. Although more research is needed to fully understand the effects of crop stacking on other aspects of the system, such as insect pests and diseases, our research suggests that crop stacking has the potential to improve weed suppression without additional inputs, and their associated costs and externalities. More generally, improving management by changing the temporal arrangement of disturbances is a novel, process-based approach that could likely be applied to other weed management practices, such as mowing and herbicide application, and which could involve mechanisms other than weed-weed competition. Leveraging this new application of existing ecological theory to improve weed management strategies holds great promise.


Agronomie ◽  
2001 ◽  
Vol 21 (8) ◽  
pp. 757-765 ◽  
Author(s):  
Giovanni Mauromicale ◽  
Giuseppe Restuccia ◽  
Mario Marchese

Sign in / Sign up

Export Citation Format

Share Document