RELIABILITY OF NDVI DERIVED BY HIGH RESOLUTION SATELLITE AND UAV COMPARED TO IN-FIELD METHODS FOR THE EVALUATION OF EARLY CROP N STATUS AND GRAIN YIELD IN WHEAT

2017 ◽  
Vol 54 (4) ◽  
pp. 604-622 ◽  
Author(s):  
PAOLO BENINCASA ◽  
SARA ANTOGNELLI ◽  
LUCA BRUNETTI ◽  
CARLO ALBERTO FABBRI ◽  
ANTONIO NATALE ◽  
...  

SUMMARYThis study was aimed at comparing in-field parameters and remote sensing NDVI (normalized difference vegetation index) by both satellite (SAT) and unmanned aerial vehicle (UAV) for the assessment of early nitrogen (N) status and prediction of yield in winter wheat (Triticum aestivum L.). Six increasing N rates, i.e., 0, 40, 80, 120, 160, 200 kg N ha−1 were applied, half at tillering and half at shooting. Thus, when the crop N status was monitored between the two N applications, consecutive N treatments differentiated from each other by just 20 kg N ha−1. The following in-field and remote sensed parameters were compared as indicators of crop vegetative and N status: plant N% (w:w) concentration; crop N uptake (Nupt); ratio between transmitted and incident photosynthetically active radiation (PARt/PARi); leaf SPAD values, an indirect index for chlorophyll content; SAT and UAV derived NDVI. As reliable indicators of wheat N availability, in-field parameters were ranked as follows: PARt/PARi ≅ Nupt > SPAD ≅ N%. The PARt/PARi, Nupt and SPAD resulted quite strongly correlated to each other. At all crop stages, the NDVI was strongly correlated with PARt/PARi and Nupt. It is of relevance that NDVI correlated quite strongly to in-field parameters and grain yield at shooting, i.e., before the second N application, when the N rate can still be adjusted. The SAT and UAV NDVIs were strongly correlated to each other, which means they can be used alternatively depending on the context.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Bee Khim Chim ◽  
Peter Omara ◽  
Natasha Macnack ◽  
Jeremiah Mullock ◽  
Sulochana Dhital ◽  
...  

Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB) and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI), intercepted photosynthetically active radiation (IPAR), grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1(range: 0.33 to 2.46 Mg ha−1) when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.


2019 ◽  
Vol 111 (6) ◽  
pp. 2889-2898
Author(s):  
Telha H. Rehman ◽  
Andre Froes Borja Reis ◽  
Nadeem Akbar ◽  
Bruce A. Linquist

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Tan ◽  
Qiang Chai ◽  
Guang Li ◽  
Cai Zhao ◽  
Aizhong Yu ◽  
...  

AbstractCrop yield is limited by water and nitrogen (N) availability. However, in Hexi Corridor of northwestern China, water scarcity and excessive fertilizer N in wheat (Triticum aestivum L.) production causes serious conflicts between water and N supply and crop demand. A field experiment was conducted from 2016 to 2018 to evaluate whether reducing of irrigation and fertilizer N will reduce grain yield of wheat. There were two irrigation quotas (192 and 240 mm) and three fertilizer N rates (135, 180, and 225 kg N ha−1). The results showed that reducing irrigation to 192 mm and N rate to 180 kg N ha−1 reduced water uptake, water uptake efficiency, and N uptake of spring wheat as compared to local practice (i.e., 240 mm irrigation and 225 kg N ha−1 fertilizer). Whereas, it improved water and N utilization efficiency, and water and N productivity. Consequently, the irrigation and N rate reduced treatment achieved the same quantity of grain yield as local practice. The path analysis showed that interaction effect between irrigation and N fertilization may attributable to the improvement of grain yield with lower irrigation and N rate. The enhanced water and N utilization allows us to conclude that irrigation quota at 192 mm coupled with fertilizer N rate at 180 kg N ha−1 can be used as an efficient practice for wheat production in arid irrigation areas.


2008 ◽  
Vol 43 (11) ◽  
pp. 1517-1523 ◽  
Author(s):  
Leandro Vagno de Souza ◽  
Glauco Vieira Miranda ◽  
João Carlos Cardoso Galvão ◽  
Fernando Roberto Eckert ◽  
Éder Eduardo Mantovani ◽  
...  

The objectives of this work were to study the genetic control of grain yield (GY) and nitrogen (N) use efficiency (NUE, grain yield/N applied) and its primary components, N uptake efficiency (NUpE, N uptake/N applied) and N utilization efficiency (NUtE, grain yield/N uptake), in maize grown in environments with high and low N availability. Experiments with 31 maize genotypes (28 hybrid crosses and three controls) were carried out in soils with high and low N rates, in the southeast of the state of Minas Gerais, Brazil. There was a reduction of 23.2% in average GY for maize grown in soil with low N, in comparison to that obtained with high N. There were 26.5, 199 and 400% increases in NUtE, NUpE, and NUE, respectively, for maize grown with low N. The general combining ability (GCA) and specific combining ability (SCA) were significant for GY, NUE and NUpE for maize grown in high N soil. Only GCA was significant for NUpE for maize grown in low N soil. The GCA and SCA for NUtE were not significant in either environment. Additive and non-additive genetic effects are responsible for the genetic control of NUE and GY for maize grown in soils with high N availability, although additive effects are more important.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 340
Author(s):  
Ewa Panek ◽  
Dariusz Gozdowski

In this study, the relationships between normalized difference vegetation index (NDVI) obtained based on MODIS satellite data and grain yield of all cereals, wheat and barley at a country level were analyzed. The analysis was performed by using data from 2010–2018 for 20 European countries, where percentage of cereals is high (at least 35% of the arable land). The analysis was performed for each country separately and for all of the collected data together. The relationships between NDVI and cumulative NDVI (cNDVI) were analyzed by using linear regression. Relationships between NDVI in early spring and grain yield of cereals were very strong for Croatia, Czechia, Germany, Hungary, Latvia, Lithuania, Poland and Slovakia. This means that the yield prediction for these countries can be as far back as 4 months before the harvest. The increase of NDVI in early spring was related to the increase of grain yield by about 0.5–1.6 t/ha. The cumulative of averaged NDVI gives more stable prediction of grain yield per season. For France and Belgium, the relationships between NDVI and grain yield were very weak.


2012 ◽  
Vol 131 (6) ◽  
pp. 716-721 ◽  
Author(s):  
Shahnoza Hazratkulova ◽  
Ram C. Sharma ◽  
Safar Alikulov ◽  
Sarvar Islomov ◽  
Tulkin Yuldashev ◽  
...  

1998 ◽  
Vol 78 (3) ◽  
pp. 563-572 ◽  
Author(s):  
V. Jowkin ◽  
J. J. Schoenau

Nitrogen availability to a spring wheat crop was examined in the cropping season in a side-by-side comparison of no-till (first year) and tillage fallow in an undulating farm field in the Brown soil zone in southwestern Saskatchewan. Thirty different sampling points along a grid in each tillage landscape were randomly selected, representing 10 each of shoulder, footslope and level landscape positions. Nitrogen availability was studied i) by profile inorganic N content ii) by crop N uptake and yield of spring wheat (Triticum aestivum L.) and iii) by 15N tracer technique and in situ burial of anion exchange resin membranes (AEM).Pre-seeding available moisture content of the surface soil samples was significantly higher under no-till compared with tillage fallow. However, no significant differences in pre-seeding profile total inorganic N, crop N uptake and yield were observed between the treatments. At the landform scale, shoulder positions of the respective tillage systems had lower profile inorganic N, crop N uptake and yield compared with other slope positions. Soil N supply power, as determined by 15N tracer and AEM techniques, was not significantly different between the tillage treatments, indicating that N availability is not likely to be greatly affected in initial years by switching to no-till fallow in these soils under normal moisture conditions. Key words: Summerfallow, landscape, nitrogen, wheat


2006 ◽  
Vol 98 (6) ◽  
pp. 1488-1494 ◽  
Author(s):  
R. K. Teal ◽  
B. Tubana ◽  
K. Girma ◽  
K. W. Freeman ◽  
D. B. Arnall ◽  
...  

2020 ◽  
Vol 133 (10) ◽  
pp. 2853-2868
Author(s):  
Mahlet T. Anche ◽  
Nicholas S. Kaczmar ◽  
Nicolas Morales ◽  
James W. Clohessy ◽  
Daniel C. Ilut ◽  
...  

Abstract Key message Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. Abstract Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the growing season. To investigate the amount of variation present in several VIs and their relationship with important end-of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple phenotypes from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alternative to mixed models to fit VIs from multiple time points.


1999 ◽  
Vol 50 (2) ◽  
pp. 137 ◽  
Author(s):  
A. Kamoshita ◽  
M. Cooper ◽  
R. C. Muchow ◽  
S. Fukai

The differences in grain nitrogen (N) concentration among 3 sorghum (Sorghum bicolor (L.) Moench) hybrids with similar grain yield were examined under N-limiting conditions in relation to the availability of assimilate and N to grain. Several manipulation treatments [N fertiliser application, lower leaves shading, thinning (reduced plant population), whole canopy shading, canopy opening, spikelet removal] were imposed to alter the relative N and assimilate availability to grain under full irrigation supply. Grain N concentration increased by either increased grain N availability or yield reduction while maintaining N uptake. Grain N concentration, however, did not decrease in the treatments where relative abundance of N compared with assimilate was intended to be reduced. The minimum levels of grain N concentration differed from 0.95% (ATx623/RTx430) to 1.14% (DK55plus) in these treatments. Regardless of the extent of variation in assimilate and N supply to grain, the ranking of hybrids on grain N concentration was consistent across the manipulation treatments. For the 3 hybrids examined, higher grain N concentration was associated with higher N uptake during grain filling and, to a lesser extent, with higher N mobilisation. Hybrids with larger grain N accumulation had a larger number of grains. There was no tradeoff between grain N concentration and yield, suggesting that grain protein concentration can be improved without sacrificing yield potential.


Sign in / Sign up

Export Citation Format

Share Document