scholarly journals Artificial induction of autogamy in Paramecium caudatum

1979 ◽  
Vol 34 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Yuuji Tsukii ◽  
Koichi Hiwatashi

SUMMARYThree methods of artificial induction of autogamy in Paramecium caudatum were described: (1) treatment with KCl+papain, (2) treatment with KCl and then with KCl + papain and (3) ordinary mating reaction and then treatment with papain. As expected, one-to-one segregation ratios were obtained in the progeny from the parents heterozygous for the two loci: mating type and lactate dehydrogenase. A high rate of autogamy is induced by method (1), but its use is restricted to only a few clones. Autogamy is also induced at a high rate by method (2), by which the induction is more stable. Autogamy is induced at a lower rate by method (3), but this method can be widely applied to every species of Paramecium which has complementary mating types. Some exautogamous progeny become completely sterile through successive autogamy. The cause of this sterility is discussed.

Genetics ◽  
1983 ◽  
Vol 104 (1) ◽  
pp. 41-62
Author(s):  
Yuuji Tsukii ◽  
Koichi Hiwatashi

ABSTRACT In mating interactions in Paramecium caudatum, initial mating agglutination is strictly mating-type specific, but subsequent conjugating pair formation is not mating-type specific. Using this nonspecificity of pair formation, intersyngenic (intersibling species) pairs were induced by mixing four mating types of two different syngens. To distinguish intersyngenic pairs from intrasyngenic ones, the behavioral marker CNR (Takahashi 1979) was mainly used. Clones of intersyngenic hybrids showed high fertility and thus made feasible a genetic analysis of syngenic specificity of mating type. The syngenic specificities of E (even) mating types were found to be controlled by co-dominant multiple alleles at the Mt locus, and those of O (odd) mating types by interactions of co-dominant multiple alleles at two loci, MA and MB. Clones of heterozygotes express dual mating types. Mt is epistatic to MA and MB, and thus O mating types can be expressed only in the recessive homozygote (mt/mt) at the Mt locus. In addition, at least one allele each at the MA and MB loci must have a common syngen specificity for the expression of O types. Thus, when MA is homozygous for one syngen and MB is homozygous for another syngen, no mating type is expressed.


1979 ◽  
Vol 39 (1) ◽  
pp. 201-213
Author(s):  
PIERANGELO LUPORINI ◽  
PAOLO BRACCHI ◽  
FULVIO ESPOSITO

A system has been developed to study cellular interactions between cells of complementary mating types prior to mating in the ciliate, Euplotes crassus. The presumptive mates were distinguished by using singlet and doublet cells of appropriate mating types in the mixtures. Cells of a given mating type were prelabelled with [3H]leucine and mixed with unlabelled complementary cells. Exchange of [3H]leucine-labelled material from donor to recipient cells was monitored through the various stages of the preconjugant interaction. A label transfer between the mating type complementary cells was detected from the beginning of the visible mating reaction, which occurs after a waiting period from the time of cell mixing and involves ciliary agglutination prior to cell body fusion. Complementary cells which were prevented from physically contacting each other and cells which were not competent to mate appeared unable to take up the labelled material. It is suggested that this material consists of some substance(s) playing an important role in the preconjugant cell-to-cell interactions of E. crassus.


1976 ◽  
Vol 69 (3) ◽  
pp. 736-740 ◽  
Author(s):  
A Kitamura ◽  
K Hiwatashi

Membrane vesicles with a high mating reactivity were obtained from cilia of Paramecium caudatum by treatment with a solution containing 2 M urea and 0.1 mM Na2-EDTA. All processes of conjugation were induced in cells of the complementary mating type by approximately 10 mug/ml proteins of the vesicles. Electron microscope observation showed that the membrane vesicles have a diameter of 100-150 nm. Electrophoretic analysis on SDS polyacrylamide gel revealed no significant difference in polypeptide patterns of the particles from the two complementary mating types.


1979 ◽  
Vol 35 (1) ◽  
pp. 177-184
Author(s):  
K. Mikami ◽  
S. Koizumi

Firmly united conjugant pairs of P. caudatum were easily separated by treatment with trypsin, 0.025–1.0 mg/ml in 2 mM phosphate buffer at pH 7.2. Cytological observations showed that pairs separated by this means undergo normal meiosis and subsequent prezygotic divisions. Microspectrophotometric comparisons of G1 micronuclei in the parent with those in clones derived from prematurely separated conjugants indicate usually the same DNA content in both. The stock dm −13, heterozygous for mating type gene loci, showed the definite ratio of segregation to 2 mating types in clones derived from prematurely separated conjugants. Those results suggest that the prematurely separated cells usually undergo autogamy.


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1437-1444
Author(s):  
C Ian Robertson ◽  
Kirk A Bartholomew ◽  
Charles P Novotny ◽  
Robert C Ullrich

The Aα locus is one of four master regulatory loci that determine mating type and regulate sexual development in Schizophyllum commune. We have made a plasmid containing a URA1 gene disruption of the Aα Y1 gene. Y1 is the sole Aα gene in Aα1 strains. We used the plasmid construction to produce an Aα null (i.e., AαΔ) strain by replacing the genomic Y1 gene with URA1 in an Aα1 strain. To characterize the role of the Aα genes in the regulation of sexual development, we transformed various Aα Y and Z alleles into AαΔ strains and examined the acquired mating types and mating abilities of the transformants. These experiments demonstrate that the Aα Y gene is not essential for fungal viability and growth, that a solitary Z Aα mating-type gene does not itself activate development, that Aβ proteins are sufficient to activate the A developmental pathway in the absence of Aα proteins and confirm that Y and Z genes are the sole determinants of Aα mating type. The data from these experiments support and refine our model of the regulation of A-pathway events by Y and Z proteins.


2017 ◽  
Vol 142 (4) ◽  
pp. 260-264
Author(s):  
Ping Li ◽  
Dong Liu ◽  
Min Guo ◽  
Yuemin Pan ◽  
Fangxin Chen ◽  
...  

Sexual reproduction in the plant parasite Phytophthora capsici Leonian requires the interaction of two distinct mating types, A1 and A2. Co-occurrence of these mating types can enhance the genetic diversity of P. capsici and alter its virulence or resistance characteristics. Using an intersimple sequence repeat (ISSR) screen of microsatellite diversity, we identified, cloned, and sequenced a novel 1121-base pair (bp) fragment specific to the A1 mating type of P. capsici. Primers Pcap-1 and Pcap-2 were designed from this DNA fragment to specifically detect the A1 mating type. Polymerase chain reaction (PCR) using these primers amplified an expected 997-bp fragment from known A1 mating types, but yielded a 508-bp fragment from known A2 mating types. This PCR-based assay could be adapted to accurately and rapidly detect the co-occurrence of A1 and A2 P. capsici mating types from field material.


1993 ◽  
Vol 13 (3) ◽  
pp. 1962-1970
Author(s):  
T D Moore ◽  
J C Edman

The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.


1993 ◽  
Vol 104 (2) ◽  
pp. 227-230
Author(s):  
U. Kues ◽  
L.A. Casselton

Having multiple mating types greatly improves the chances of meeting a compatible mating partner, particularly in an organism like the mushroom that has no sexual differentiation and no mechanism for signalling to a likely mate. Having several thousands of mating types, as some mushrooms do, is, however, remarkable - and even more remarkable is the fact that individuals only recognise that they have met a compatible mate after their cells have fused. How are such large numbers of mating types generated and what is the nature of the intracellular interaction that distinguishes self from non- self? Answers to these fascinating questions come from cloning some of the mating type genes of the ink cap mushroom Coprinus cinereus. A successful mating in Coprinus triggers a major switch in cell type, the conversion of a sterile mycelium with uninucleate cells (monokaryon) to a fertile mycelium with binucleate cells (dikaryon) which differentiates the characteristic fruit bodies. The mating type genes that regulate this developmental switch map to two multiallelic loci designated A and B and these must both carry different alleles for full mating compatibility. A and B independently regulate different steps in the developmental switch, making it possible to study just one component of the system and work in our laboratory has concentrated on understanding the structure and function of the A genes. It is estimated that some 160 different A mating types exist in nature, any two of which can together trigger the A-regulated part of sexual development. The first clue to how such large numbers are generated came from classical genetic analysis, which identified two functionally redundant A loci, (alpha) and beta. Functional redundancy is, indeed, the key to multiple A mating types and, as seen in Fig.1, molecular cloning has identified many more genes than was possible by recombination analysis.


Author(s):  
Suguru Ariyoshi ◽  
Yusuke Imazu ◽  
Ryuji Ohguri ◽  
Ryo Katsuta ◽  
Arata Yajima ◽  
...  

Abstract The heterothallic group of the plant pathogen Phytophthora can sexually reproduce between the cross-compatible mating types A1 and A2. The mating hormone α2, produced by A2 mating type and utilized to promote the sexual reproduction of the partner A1 type, is known to be biosynthesized from phytol. In this study, we identified two biosynthetic intermediates, 11- and 16-hydroxyphytols (1 and 2), for α2 by administering the synthetic intermediates to an A2 type strain to produce α2 and by administering phytol to A2 strains to detect the intermediates in the mycelia. The results suggest that α2 is biosynthesized by possibly two cytochrome P450 oxygenases via two hydroxyphytol intermediates (1 and 2) in A2 hyphae and secreted outside.


Sign in / Sign up

Export Citation Format

Share Document