reactive membrane
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 3)

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 622
Author(s):  
Vaibhav Maheshwari ◽  
Xia Tao ◽  
Stephan Thijssen ◽  
Peter Kotanko

Removal of protein-bound uremic toxins (PBUTs) during conventional dialysis is insufficient. PBUTs are associated with comorbidities and mortality in dialysis patients. Albumin is the primary carrier for PBUTs and only a small free fraction of PBUTs are dialyzable. In the past, we proposed a novel method where a binding competitor is infused upstream of a dialyzer into an extracorporeal circuit. The competitor competes with PBUTs for their binding sites on albumin and increases the free PBUT fraction. Essentially, binding competitor-augmented hemodialysis is a reactive membrane separation technique and is a paradigm shift from conventional dialysis therapies. The proposed method has been tested in silico, ex vivo, and in vivo, and has proven to be very effective in all scenarios. In an ex vivo study and a proof-of-concept clinical study with 18 patients, ibuprofen was used as a binding competitor; however, chronic ibuprofen infusion may affect residual kidney function. Binding competition with free fatty acids significantly improved PBUT removal in pre-clinical rat models. Based on in silico analysis, tryptophan can also be used as a binding competitor; importantly, fatty acids or tryptophan may have salutary effects in HD patients. More chemoinformatics research, pre-clinical, and clinical studies are required to identify ideal binding competitors before routine clinical use.


2021 ◽  
Vol 16 (3) ◽  
pp. 472-480
Author(s):  
Norhayati Abdul Rahman ◽  
Fauziah Marpani ◽  
Nur Hidayati Othman ◽  
Nur Hashimah Alias ◽  
Junaidah Jai ◽  
...  

Thermodynamic stabled CO2 molecules can be biocatalytically reduced to methanol via three cascade dehydrogenases (formate, formaldehyde and alcohol) with the aid of cofactor as the electron donor. In this study, Alcohol dehydrogenase (EC 1.1.1.1), the third step of the cascade enzymatic reaction which catalyzed formaldehyde (CHOH) to methanol (CH3OH) will be immobilized in an ultrafiltration membrane. The enzyme will be immobilized in the support layer of a poly(ether)sulfone (PES) membrane via a technique called fouling induced enzyme immobilization. The objective of this study is to evaluate the effect of varying pH (acid (pH 5), neutral (pH 7) and alkaline (pH 9)) of the feed solution during immobilization process of ADH in the membrane in terms of permeate flux, observed rejection, enzyme loading and fouling mechanism. The experiment was conducted in a pressure driven, dead-end stirred filtration cell. Reaction conversion and biocatalytic productivity will be also evaluated. The results showed that permeate flux for acid solution were the lowest during immobilization. High concentration polarization and fouling resistance cause lower observed rejection for pH 7 and 9. Enzyme loading for pH 5 give 73.8% loading rate which is the highest compared to 62.4% at pH 7 and 70.1% at pH 9. Meanwhile, the conversion rate during the reaction shows that reaction on fouled membrane showed more than 90% conversion for pH 5 and 7. The fouling model predicted that irreversible fouling occurs during enzyme immobilization at pH 7 with standard blocking mechanism while reversible fouling occurs at pH 5 and 9 with intermediate and complete blocking, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yumeng Zhao ◽  
Meng Sun ◽  
Xiaoxiong Wang ◽  
Chi Wang ◽  
Dongwei Lu ◽  
...  

AbstractThe importance of singlet oxygen (1O2) in the environmental and biomedical fields has motivated research for effective 1O2 production. Electrocatalytic processes hold great potential for highly-automated and scalable 1O2 synthesis, but they are energy- and chemical-intensive. Herein, we present a Janus electrocatalytic membrane realizing ultra-efficient 1O2 production (6.9 mmol per m3 of permeate) and very low energy consumption (13.3 Wh per m3 of permeate) via a fast, flow-through electro-filtration process without the addition of chemical precursors. We confirm that a superoxide-mediated chain reaction, initiated by electrocatalytic oxygen reduction on the cathodic membrane side and subsequently terminated by H2O2 oxidation on the anodic membrane side, is crucial for 1O2 generation. We further demonstrate that the high 1O2 production efficiency is mainly attributable to the enhanced mass and charge transfer imparted by nano- and micro-confinement effects within the porous membrane structure. Our findings highlight a new electro-filtration strategy and an innovative reactive membrane design for synthesizing 1O2 for a broad range of potential applications including environmental remediation.


2020 ◽  
Vol 386 ◽  
pp. 121955 ◽  
Author(s):  
Shaobin Sun ◽  
Hong Yao ◽  
Wanyi Fu ◽  
Shan Xue ◽  
Wen Zhang

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 180
Author(s):  
Shaobin Sun ◽  
Hong Yao ◽  
Xinyang Li ◽  
Shihai Deng ◽  
Shenlong Zhao ◽  
...  

Pharmaceutical residuals are increasingly detected in natural waters, which made great threat to the health of the public. This study evaluated the utility of the photo-Fenton ceramic membrane filtration toward the removal and degradation of sulfamethoxazole (SMX) as a model recalcitrant micropollutant. The photo-Fenton catalyst Goethite (α-FeOOH) was coated on planar ceramic membranes as we reported previously. The removal of SMX in both simulated and real toilet wastewater were assessed by filtering the feed solutions with/without H2O2 and UV irradiation. The SMX degradation rate reached 87% and 92% respectively in the presence of UV/H2O2 for the original toilet wastewater (0.8 ± 0.05 ppb) and toilet wastewater with a spiked SMX concentration of 100 ppb. The mineralization and degradation by-products were both assessed under different degradation conditions to achieve deeper insight into the degradation mechanisms during this photo-Fenton reactive membrane filtration. Results showed that a negligible removal rate (e.g., 3%) of SMX was obtained when only filtering the feed solution through uncoated or catalyst-coated membranes. However, the removal rates of SMX were significantly increased to 67% (no H2O2) and 90% (with H2O2) under UV irradiation, respectively, confirming that photo-Fenton reactions played the key role in the degradation/mineralization process. The highest apparent quantum yield (AQY) reached up to approximately 27% when the H2O2 was 10 mmol·L−1 and UV254 intensity was 100 μW·cm−2. This study lays the groundwork for reactive membrane filtration to tackle the issues from micropollution.


Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 111 ◽  
Author(s):  
Jane Kucera

Reverse osmosis and nanofiltration systems are continuously challenged with biofouling of polyamide membranes that are used almost exclusively for these desalination techniques. Traditionally, pretreatment and reactive membrane cleanings are employed as biofouling control methods. This in-depth review paper discusses the mechanisms of membrane biofouling and effects on performance. Current industrial disinfection techniques are reviewed, including chlorine and other chemical and non-chemical alternatives to chlorine. Operational techniques such as reactive membrane cleaning are also covered. Based on this review, there are three suggested areas of additional research offering promising, polyamide membrane-targeted biofouling minimization that are discussed. One area is membrane modification. Modification using surface coatings with inclusion of various nanoparticles, and graphene oxide within the polymer or membrane matrix, are covered. This work is in the infancy stage and shows promise for minimizing the contributions of current membranes themselves in promoting biofouling, as well as creating oxidant-resistant membranes. Another area of suggested research is chemical disinfectants for possible application directly on the membrane. Likely disinfectants discussed herein include nitric oxide donor compounds, dichloroisocyanurate, and chlorine dioxide. Finally, proactive cleaning, which aims to control the extent of biofouling by cleaning before it negatively affects membrane performance, shows potential for low- to middle-risk systems.


Sign in / Sign up

Export Citation Format

Share Document