scholarly journals Implementation of cell-free DNA-based non-invasive prenatal testing in a National Health Service Regional Genetics Laboratory

2019 ◽  
Vol 101 ◽  
Author(s):  
Fiona S. Togneri ◽  
Mark D. Kilby ◽  
Elizabeth Young ◽  
Samantha Court ◽  
Denise Williams ◽  
...  

Abstract Background Non-invasive prenatal testing (NIPT) for the detection of foetal aneuploidy through analysis of cell-free DNA (cfDNA) in maternal blood is offered routinely by many healthcare providers across the developed world. This testing has recently been recommended for evaluative implementation in the UK National Health Service (NHS) foetal anomaly screening pathway as a contingent screen following an increased risk of trisomy 21, 18 or 13. In preparation for delivering a national service, we have implemented cfDNA-based NIPT in our Regional Genetics Laboratory. Here, we describe our validation and verification processes and initial experiences of the technology prior to rollout of a national screening service. Methods Data are presented from more than 1000 patients (215 retrospective and 840 prospective) from ‘high- and low-risk pregnancies’ with outcome data following birth or confirmatory invasive prenatal sampling. NIPT was by the Illumina Verifi® test. Results Our data confirm a high-fidelity service with a failure rate of ~0.24% and a high sensitivity and specificity for the detection of foetal trisomy 13, 18 and 21. Secondly, the data show that a significant proportion of patients continue their pregnancies without prenatal invasive testing or intervention after receiving a high-risk cfDNA-based result. A total of 46.5% of patients referred to date were referred for reasons other than high screen risk. Ten percent (76/840 clinical service referrals) of patients were referred with ultrasonographic finding of a foetal structural anomaly, and data analysis indicates high- and low-risk scan indications for NIPT. Conclusions NIPT can be successfully implemented into NHS regional genetics laboratories to provide high-quality services. NHS provision of NIPT in patients with high-risk screen results will allow for a reduction of invasive testing and partially improve equality of access to cfDNA-based NIPT in the pregnant population. Patients at low risk for a classic trisomy or with other clinical indications are likely to continue to access cfDNA-based NIPT as a private test.

2016 ◽  
Vol 62 (6) ◽  
pp. 848-855 ◽  
Author(s):  
George Koumbaris ◽  
Elena Kypri ◽  
Kyriakos Tsangaras ◽  
Achilleas Achilleos ◽  
Petros Mina ◽  
...  

Abstract BACKGROUND There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). METHODS We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. RESULTS Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%–100%) cases of trisomy 21, 16/16 (95% CI, 79.4%–100%) cases of trisomy 18, 5/5 (95% CI, 47.8%–100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%–100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%–100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. CONCLUSIONS The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT.


2014 ◽  
Vol 44 (S1) ◽  
pp. 182-182
Author(s):  
C. Comas ◽  
M. Echevarria ◽  
M. Rodríguez ◽  
P. Prats ◽  
I. Rodríguez ◽  
...  

2020 ◽  
Vol 40 (8) ◽  
pp. 911-917 ◽  
Author(s):  
Min Pan ◽  
Pingsheng Chen ◽  
Jiafeng Lu ◽  
Zhiyu Liu ◽  
Erteng Jia ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfei Xu ◽  
Pengzhen Jin ◽  
Yu Lei ◽  
Yeqing Qian ◽  
Yuqing Xu ◽  
...  

To evaluate the clinical efficiency of non-invasive prenatal screening (NIPS) for fetal aneuploidies in low-risk and twin pregnancies, patients who received NIPS in a tertiary university hospital were enrolled, and their clinical data, NIPS results and pregnancy outcomes were collected. Patients were divided into singleton and twin pregnancies, and then those with singleton pregnancies were divided into low- and high-risk pregnancies. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were estimated. Comparisons were made on the clinical efficiency of NIPS between singleton and twin pregnancies, as well as between low- and high-risk pregnancies. Of 66,172 patients enrolled, 59,962 were eligible for analysis. The sensitivity, specificity and NPV were ≥ 99% in singleton and twin pregnancies. The PPVs were 90.4, 56.6, and 13.0% in singleton pregnancies, while 100, 33.3, and 0% in twin pregnancies for trisomy 21 (T21), trisomy 18 (T18) and trisomy 13 (T13), respectively (P > 0.05 for all). The PPVs were 97.4 and 90.0% in high-risk pregnancies, while 78.6 and 16.7% in low-risk pregnancies for T21 and T18, respectively (P < 0.05 for all). In summary, the performance of NIPS in singleton pregnancies was similar to that in twin pregnancies. NIPS can be recommended for all pregnancies regardless of the risks.


Author(s):  
Markus Hodal Drag ◽  
Tuomas Oskari Kilpeläinen

Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of non-invasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for non-invasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as non-alcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarise the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Juozas Gordevičius ◽  
Milda Narmontė ◽  
Povilas Gibas ◽  
Kotryna Kvederavičiūtė ◽  
Vita Tomkutė ◽  
...  

Abstract Background Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. Methods We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. Results We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. Conclusions uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.


Sign in / Sign up

Export Citation Format

Share Document