Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: implications for magma evolution and crustal structure

1994 ◽  
Vol 131 (3) ◽  
pp. 329-333 ◽  
Author(s):  
A. P. Dickin

AbstractThe geochemistry of Tertiary igneous rocks from Arran, western Scotland, provides a probe for the structure of the crust in the region of the Highland Boundary Fault (HBF). New Nd isotope data, coupled with other geochemical evidence, point to variable contamination of primitive mantle-derived magmas during magmatic differentiation in the crust. Two different isotopic contamination trends are seen. The northern granite was generated by contamination of basic differentiates by crust resembling exposed Dalradian units. Data for the central granite, and several other minor intrusions from south of the HBF, trend towards the reported isotopic signatures of granulite-facies xenoliths from the Midland Valley. However, quartz porphyry intrusions in the south of the island are compositionally similar to the nothern granite, and were probably intruded southwards across the HBF in dykes. Hence the isotopic signatures of the Tertiary intrusions reflect the different character of the crustal units on either side of the fault.

1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


Lithos ◽  
2019 ◽  
Vol 328-329 ◽  
pp. 312-327 ◽  
Author(s):  
Fei Zheng ◽  
Li-Qun Dai ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng ◽  
Zheng Xu

Author(s):  
R. J. Muir ◽  
W. R. Fitches ◽  
A. J. Maltman

ABSTRACTThe Precambrian basement on the islands of Islay, Colonsay and Inishtrahull comprises a deformed igneous association of mainly syenite and gabbro, with minor mafic and felsic intrusions. This association is collectively referred to as the Rhinns Complex. Isotopic data indicate that the complex represents new addition of material to the crust at c. 1·8 Ga. The igneous protolith was juvenile mantle-derived material, not reworked Archaean crust. Overall, the complex has an alkalic composition, with major and trace element patterns similar to igneous rocks generated in a subduction-related setting: high LILE/HFSE and LREE/HREE ratios, together with negative Nb, P and Ti anomalies.The formation of the Rhinns Complex was contemporaneous with the Laxfordian tectonothermal cycle in the Lewisian Complex. These Proterozoic events are most likely associated with an extensive 1·9–1·7 Ga mobile belt around the southern margin of Laurentia-Baltica. As part of this belt, the Rhinns Complex forms a link between the Ketilidian province of South Greenland and the Svecofennian of Scandinavia.Inherited isotopic signatures in the Caledonian granites on the north side of the Highland Boundary Fault may reflect the presence of a large area of Proterozoic basement (?Rhinns Complex) beneath Scotland and NW Ireland. Alternatively, the Proterozoic signature could be derived from the incorporation of Moine or Dalradian sediment into the granitic magmas.


2010 ◽  
Vol 47 (6) ◽  
pp. 927-940 ◽  
Author(s):  
J. V. Owen ◽  
R. Corney ◽  
J. Dostal ◽  
A. Vaughan

The Liscomb Complex comprises Late Devonian intrusive rocks (principally peraluminous granite) and medium- to high-grade metamorphic rocks (“gneisses”) that collectively are hosted by low-grade (greenschist facies) metasediments of the Cambro-Ordovician Meguma Group. The conventional view that these “gneisses” contain high-grade mineral assemblages and represent basement rocks has recently been challenged, and indeed, some of the rocks previously mapped as gneisses, particularly metapelites, have isotopic compositions resembling the Meguma Group. Amphibole-bearing enclaves in the Liscomb plutons, however, are isotopically distinct and in this regard resemble xenoliths of basement gneisses in the Popes Harbour lamprophyre dyke, south of the Liscomb area. Metasedimentary enclaves with Meguma isotopic signatures can contain garnets with unzoned cores (implying high temperatures) that host high-grade minerals (prismatic sillimanite, spinel, and (or) corundum) and are enclosed by retrograde-zoned rims. These features are interpreted here as having formed during and following the attainment of peak temperatures related to Liscomb magmatism. The amphibole-bearing meta-igneous rocks described here contain cummingtonite or hornblendic amphibole and occur as enclaves in granodioritic to tonalitic plutons. They are mineralogically, texturally, and isotopically distinct from Meguma metasediments and at least some of the plutonic rocks that enclose them, so remain the most likely candidate for basement rocks in the Liscomb Complex.


2012 ◽  
Vol 49 (2) ◽  
pp. 412-433 ◽  
Author(s):  
Carolina Valverde Cardenas ◽  
Aphrodite Indares ◽  
George Jenner

The Canyon domain and the Banded complex in the Manicouagan area of the Grenville Province preserve a record of magmatic activity from ∼1.4 to 1 Ga. This study focuses on 1.4–1.2 Ga mafic rocks and 1 Ga ultrapotassic dykes. Geochemistry and Sm–Nd isotopic signatures were used to constrain the origin of these rocks and evaluate the changing role of the mantle with time and tectonic setting from the late evolution of the Laurentian margin to the Grenvillian orogeny, in the Manicouagan area. The mafic rocks include layers inferred to represent flows, homogeneous bodies in mafic migmatite, and deformed dykes, all of which were recrystallized under granulite-facies conditions during the Grenvillian orogeny. In spite of the complexities inherent in these deformed and metamorphosed mafic rocks, we were able to recognize suites with distinctive geochemical and isotopic signatures. Integration of this data along with available ages is consistent with a 1.4 Ga continental arc cut by 1.2 Ga non-arc basalts derived from depleted asthenospheric mantle, with varied degrees of crustal contamination and inferred to represent magmatism in an extensional environment. The 1 Ga ultrapotassic dykes postdate the Grenvillian metamorphism. They are extremely enriched in incompatible elements, have negative Nb anomalies, relatively unradiogenic Sr-isotopic compositions (initial 87Sr/86Sr ~ 0.7040) and εNd –3 to –15. Some dykes have compositional characteristics consistent with derivation from the mantle, ruling out crustal contamination as a major process in their petrogenesis. The most likely source region for the ultrapotassic dykes is a metasomatized subcontinental lithospheric mantle, with thermal input from the asthenosphere in association with post-orogenic delamination.


2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


Sign in / Sign up

Export Citation Format

Share Document