Composite Ordovician lamprophyre (spessartite) intrusions around the Midlands Microcraton in central Britain

1993 ◽  
Vol 130 (5) ◽  
pp. 657-663 ◽  
Author(s):  
R. S. Thorpe ◽  
J. W. Gaskarth ◽  
P. J. Henney

AbstractLamprophyre sills and dykes of Ordovician age were emplaced within Cambrian–Lower Ordovician sedimentary rocks around the northern margins of the Midlands Microcraton. The intrusions show internal mineralogical and chemical variations indicating emplacement as multiple intrusions of co-magmatic pulses. The chemical characteristics of the lamprophyre magmas indicate formation by small-degree volatile-rich partial melting of lithospheric mantle enriched and modified by Lower Palaeozoic subduction (Th/Ta 5.3–11.6, La/Ta 29–82.3), together with a contribution from within-plate mantle source (Zr/Yc. 6) and/or mineralogically heterogeneous lithosphere, followed by varying degrees of fractional crystallization during uprise.

1985 ◽  
Vol 122 (4) ◽  
pp. 389-396 ◽  
Author(s):  
R. S. Thorpe ◽  
R. Macdonald

AbstractThe Whin Sill comprises a major quartz tholeiite sill of late Carboniferous age underlying an area of c. 5000 km2 and with a volume of c. 200 km3, associated with contemporaneous dykes emplaced within Carboniferous sedimentary rocks in northeast England. New trace element analyses of chilled margins, sill interiors and dykes indicate that the Whin Sill complex magmas show significant chemical variations in terms of the relatively stable trace elements Th, Ce, Y, Zr, Nb and Ni. These data indicate that the complex was fed by a large number of compositionally distinct magma pulses, and that certain of the dykes may have formed feeder channels for the sill. The chemical characteristics of the sill and dyke samples are consistent with derivation by extensive polybaric fractional crystallization of olivine tholeiite magma derived by partial melting of compositionally heterogeneous mantle peridotite and/or crustal contamination of mantle-derived magmas.


2017 ◽  
Vol 47 (1) ◽  
pp. 109-126 ◽  
Author(s):  
Adriano Guilherme da Silva ◽  
Cícera Neysi de Almeida ◽  
Sérgio de Castro Valente ◽  
Leonardo Fonseca Borghi de Almeida

ABSTRACT: The sedimentary rocks within the Paleozoic Parnaiba basin in NE Brazil were intruded by voluminous tholeiitic diabase sills and covered by coeval basaltic flows. This paper presents lithogeochemical data of borehole samples obtained from wells located in the eastern portion of the Parnaiba basin. The diabases are subalkaline tholeiitc rocks comprising three high-TiO2 and three low-TiO2 suites that are unrelated by differentiation processes. Fractional crystallization of olivine and augite was the predominantly evolutionary processes within individual high- and low-TiO2 suites as depicted by trace element geochemical modelling, exception being made for one low-TiO2 suite that evolved by AFC. Parental compositions for both low- and high-TiO2 suites are related with variably enriched, spinel harzburgitic sources likely to represent the heterogeneous subcontinental lithospheric mantle underneath the sedimentary basin. The geochemical provinciality of the Parnaiba tholeiitic magmatism seems unrelated with the Transbrasiliano Lineament but may be due to lithospheric mantle amalgamation and remobilization occurred during previous tectonic events.


Geologos ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 51-64
Author(s):  
Mohammad Boomeri ◽  
Rahele Moradi ◽  
Sasan Bagheri

AbstractThe Oligocene Lar igneous complex is located in the Sistan suture zone of Iran, being emplaced in Paleocene to Eocene flysch-type rocks. This complex includes mainly intermediate K-rich volcanic (trachyte, latite and andesite) and plutonic (syenite and monzonite) rocks that belong to shoshonitic magma. The geochemical characteristics of the Lar igneous complex, such as an enrichment of LREE and LILE relative to HREE and HFSE, respectively, a negative anomaly of Ti, Ba and Nb and a positive anomaly of Rb and Th are similar to those of arc-type igneous rocks. Tectonic discrimination diagrams also show that rocks of the Lar igneous complex fall within the arc-related and post-collisional fields and K-enrichment of these rocks confirm the post-collisional setting. Based on geochemical features, the Lar igneous complex magma was derived from partial melting of a phlogopite-bearing, enriched and metasomatised lithospheric mantle source and the magma was affected by some evolutionary processes like fractional crystallisation and crustal contamination.


Author(s):  
Tiffany A Rivera ◽  
Craig M White ◽  
Mark D Schmitz ◽  
Brian R Jicha

Abstract We present new geochemical, Sr, Nd, and Pb isotope, and 40Ar/39Ar data from Pleistocene basalts of the Western Snake River Plain (WSRP), Idaho, USA to explore their petrogenesis and to investigate the nature of the lithosphere at the western boundary of the North American craton. The basalts are divided into three groups based on their geochemical and isotopic characteristics. Prior to ∼1 Ma, volcanoes in the WSRP erupted iron-rich tholeiites (FeB1), but subsequent volcanism was dominated by concurrent eruptions of mildly alkaline, alumina-rich lavas (AlB) and iron-rich tholeiites (FeB2) with isotopic signatures similar to the AlB lavas. New 40Ar/39Ar dates of AlB and FeB2 basalts range from 0.920 ± 0.049 Ma to 0.287 ± 0.014 Ma. MELTS models of FeB1 differentiation trends indicate that the range of compositions in this suite can be produced by 10–15% crystallization of olivine and plagioclase at low pressure using the least evolved FeB1 composition as a parental magma; isotopic ratios can be produced via combined assimilation of a Miocene rhyolite and fractional crystallization. Additional modeling suggests that parental magmas at AlB centers were produced by 3–12% equilibrium melting of a garnet-spinel enriched mantle source, slightly different to that proposed for the youngest mildly alkaline lavas of the eastern and central Snake River Plain. Our new geochemical, isotopic, and geochronologic data of the FeB2 basalts suggests they are related to AlB-type magmas via a combination of fractional crystallization and assimilation of evolved mafic crust. MELTS models suggest that crystallization of an AlB parental melt at a depth of 6–8 km (2.5 kb) could produce residual liquids having many of the major oxide characteristics of FeB2 ferrobasalts. Sr-Nd-Pb isotopic signatures of these three suites indicate a dominant contribution from an enriched plume source. FeB1 lavas are likely products of mixing between melts of an enriched plume mantle source (represented by Imnaha and Steens Basalts of the Columbia River Basalt Group) and isotopically heterogeneous sub-continental lithospheric mantle (SCLM) that has been isolated from the convecting mantle since the Archean. Isotopic ratios of FeB2 and AlB lavas capture mixing between enriched plume mantle and a more isotopically homogeneous ancient SCLM domain characteristic of the eastern and central Snake River Plain, with a coupled decrease in lithospheric contribution and degree of partial melting through time to the present. Mixtures of enriched asthenospheric reservoirs with lithospheric mantle have been proposed for neighboring volcanic fields to the east along the strike of the Yellowstone-SRP hotspot track, and to the west due to differences in the mantle underlying the boundary of the North American craton and accreted terranes. Our petrogenetic model for the Pleistocene WSRP basalts suggests that there is also a lateral, across strike gradient in the geometry and interaction of enriched plume mantle and ancient lithosphere. We reiterate suggestions that the WSRP is a lithosphere-scale conduit connecting initial plume head impingement in east-central Oregon with the subsequent Yellowstone-SRP hotspot plume tail track.


1987 ◽  
Vol 77 (4) ◽  
pp. 361-366 ◽  
Author(s):  
R. S. Thorpe

ABSTRACTPotassium (K)-rich volcanic rocks occur within Permian sedimentary rocks in SW England and are approximately contemporaneous with the emplacement of the Cornubian granite batholith. The volcanic rocks have chemical characteristics of subduction-related magmas and may have been derived by small amounts of partial melting of heterogeneous large-ion lithophile (LIL) enriched mantle with the assemblage olivine–pyroxene–garnet–phlogopite–titanate. The LIL enrichment may have occurred during shallow or oblique subduction of oceanic lithosphere below SW England during the Devonian and Carboniferous. Such LIL-enriched mantle may have contributed some components to the Cornubian granite batholith.


2008 ◽  
Vol 145 (5) ◽  
pp. 685-701 ◽  
Author(s):  
NANCY A. LEASE ◽  
ABDEL-FATTAH M. ABDEL-RAHMAN

AbstractThe Plio-Quaternary Euphrates volcanic field of NE Syria includes large discontinuous exposures of basanitic and basaltic lava flows (1200 km2 in area). It represents the northern segment of the Cenozoic volcanic province of the Middle East and is located near the Bitlis collision suture. The rocks consist of olivine (15–20%), clinopyroxene (30–35%), plagioclase (45–55%) and opaque phases. Chemically, the rocks are largely ultrabasic (SiO2 38.2–45.5 wt%, MgO 8.7–13.0 wt% and average Mg number of 0.65). They are enriched in incompatible trace elements such as Zr (133–276 ppm), Nb (25–71 ppm) and Y (17–28 ppm). The REE patterns are strongly fractionated ((La/Yb)N = 19.6), indicative of a garnet-bearing source. The 143Nd/144Nd isotopic compositions range from 0.512868 to 0.512940 (εNd = 4.5 to 5.9), and 87Sr/86Sr from 0.70309 to 0.70352. These chemical and isotopic compositions reflect strong affinities to OIB. Elemental ratios such as K/P (3.4), La/Ta (13) and La/Nb (0.77), and the low SiO2 values, suggest that the Euphrates magma was subjected to minimal crustal contamination. Petrogenetic modelling has been carried out using a variety of mantle source materials, different degrees of partial melting (0.1 to 10%), and a number of scenarios including metasomatized sources. Modelling suggests that the magma could have been produced as a result of a small degree of partial melting of either (1) a garnet-bearing depleted source enriched with a small addition of metasomatizing fluids, or (2) a garnet-bearing fertile source. The overall chemical and petrological characteristics are more consistent with the generation of the Euphrates magma by a small degree of partial melting (F = 1%) of a primitive, garnet-lherzolite mantle source, possibly containing a minor spinel component. The Neogene collision of the Arabian plate with Eurasia along the Bitlis suture resulted in reactivation (beneath the Euphrates basin) of deep-seated fractures, along which lavas may have penetrated the crust.


1996 ◽  
Vol 60 (398) ◽  
pp. 221-236 ◽  
Author(s):  
Jason C. Canning ◽  
P. J. Henney ◽  
M. A. Morrison ◽  
J. W. Gaskarth

AbstractThe geochemistry of late Caledonian minettes from across the orogenic belt is compared in order to constrain the composition of the Caledonian sub-continental lithospheric mantle (SCLM). All the minettes are similar petrographically and chemically and several samples have characteristics typical of near primary mantle melts. Samples from the Northern Highlands and the Caledonian foreland show enrichment in many trace elements (notably LILE and LREE) relative to those from the Grampians, the Southern Uplands and northern England, coupled with distinct Nd and Sr isotope characteristics. Processes such as fractional crystallization, crustal assimilation, and partial melting played a negligible role in creating the differences between the two groups which reflect long-term, time-integrated differences in the compositions of their SCLM sources. The Great Glen Fault appears to represent the boundary between these two lithospheric mantle domains. Other currently exposed Caledonian tectonic dislocations cannot be correlated directly with compositional changes within the SCLM. The chemical provinciality displayed by the minettes shows some resemblance to that within other late Caledonian igneous suites, including the newer granites, suggesting that the minettes may represent the lithospheric mantle contributions to these rocks.


1986 ◽  
Vol 23 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Christian Picard ◽  
Michel Piboule

In the northeastern part of the Abitibi orogenic belt, the Archean Matagami–Chibougamou greenstone belt (2700 Ma) includes a basal volcanic sequence named the Roy Group, unconformably overlain by a volcano-sedimentary series called the Opemisca Group.The Roy Group, to the west of the town of Chapais, consists of a thick, stratified, and polycyclic volcanic series (thickness = 11 000 m) resembling the large, western Abitibi submarine stratovolcanoes constructed by three mafic to felsic magmatic cycles. The first cycle (Chrissie Formation) shows lateral spreading and is composed only of a meta-andesite and felsic pyroclastite sequence of calc-alkaline affinity. The other two cycles (Obatogamau and Waconichi formations; then Gilman, Blondeau, and Scorpio formations) are characterized by a sequence of repeated MORB type basaltic lava flows of tholeiitic affinity and by intermediate to acid lava and pyroclastic sequences calc-alkaline affinity.The stratigraphic and petrographic data suggest emplacement of mafic lavas on an abyssal plain (Obatogamau Formation) or at a later time on the flanks of a large submarine volcanic shield (Gilman and Blondeau formations). The lava and felsic pyroclastite flows were formed by very explosive eruptions from central spreading type volcanoes above a pre-existing continental crust. In particular, the Scorpio volcanic rocks were emplaced on volcanic islands later dismantled by erosion.The contents and distribution of trace elements and rare earths show that basaltic lavas resulted from an equilibrium partial melting (F = 15–35%) of spinel lherzolite type mantle sources depleted to weakly enriched in Th, Ta, Nb, and light rare-earth elements (LREE), and from fractional crystallization at low pressure of feldspar, clinopyroxene, and olivine. The lavas and the felsic pyroclastites of the Waconichi and Scorpio formations appear to result from partial melting of a mantle source of lherzolite type enriched in LREE and involving some garnet. At a late stage, the melts were probably contaminated by some continental crust materials and then differentiated by fractional crystallization of plagioclase, amphibole, biotite, and magnetite. The lavas in the Chrissie Formation and the middle member of the Gilman Formation seem to result from partial melting of a mantle source enriched in LREE with a composition between the two described above. They were subsequently modified by fractional crystallization of the plagioclase, clinopyroxene, olivine, and titanomagnetite.In general, the mafic to felsic magmatic cycles observed are characterized by a thick sequence of repeated tholeiitic basalt flows similar to those of modern mid-oceanic ridges and by a lava and felsic pyroclastite sequence of calc-alkaline affinity comparable to those occurring in orogenic belts. The transition from one lava sequence to another is marked by a significant chemical discontinuity, and the mantle sources exhibit an increasing enrichment in LREE during a given magmatic cycle. A model is proposed to satisfactorily explain all the stratigraphic, petrographic, and geochemical data implying a hot spot type mechanism, which could be responsible for the cyclic, rising diapirs inside the stratified Archean mantle and for initiating the repeated mantle source meltings, depleted and enriched in LREE, respectively. [Journal Translation]


Author(s):  
Ze-Zhou Wang ◽  
Sheng-Ao Liu

Abstract Intraplate basaltic volcanism commonly exhibits wide compositional ranges from silica-undersaturated alkaline basalts to silica-saturated tholeiitic basalts. Possible mechanisms for the compositional transition involve variable degrees of partial melting of a same source, decompression melting at different mantle depths (so-called “lid effect”), and melt-peridotite interaction. To discriminate between these mechanisms, here we investigated major-trace elemental and Sr-Nd-Mg-Zn isotopic compositions of a suite of intraplate alkaline and tholeiitic basalts from the Datong volcanic field in eastern China. Specifically, we employed Mg and Zn isotope systematics to assess whether the silica-undersaturated melts originated from a carbonated mantle source. The alkaline basalts have young HIMU-like Sr and Nd isotopic compositions, lower δ26Mg (-0.42‰ to -0.38‰) and higher δ66Zn (0.40‰ to 0.46‰) values relative to the mantle. These characteristics were attributable to an asthenospheric mantle source hybridized by carbonated melts derived from the stagnant Pacific slab in the mantle transition zone. From alkaline to tholeiitic basalts, δ26Mg gradually increases from -0.42‰ to -0.28‰ and δ66Zn decreases from 0.46‰ to 0.28‰ with decreasing alkalinity and incompatible trace element abundances (e.g. Rb, Nb, Th and Zr). The Mg and Zn isotopic variations are significantly beyond the magnitude (<0.1‰) induced by different degrees of fractional crystallization and partial melting of a same mantle source, excluding different degree of partial melting and the “lid effect” as possible mechanisms accounting for the compositional variations in the Datong basalts. There are strong, near-linear correlations of δ26Mg and δ66Zn with 87Sr/86Sr (R2=0.75 − 0.81) and 143Nd/144Nd (R2=0.83 − 0.90), suggesting an additional source for the Datong basalts. This source is characterized by pristine mantle-like δ26Mg and δ66Zn values as well as EM1-like Sr-Nd isotopic ratios, pointing towards a metasomatized subcontinental lithospheric mantle (SCLM). Isotope mixing models show that mingling between alkaline basaltic melts and partial melts from the SCLM imparts all the above correlations, which means that the SCLM must have been partially melted during melt-SCLM reaction. Our results underline that interaction between carbonated silica-undersaturated basaltic melts and the SCLM acts as one of major processes leading to the compositional diversity in intracontinental basaltic volcanism.


Sign in / Sign up

Export Citation Format

Share Document