scholarly journals Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma)

2006 ◽  
Vol 143 (5) ◽  
pp. 561-608 ◽  
Author(s):  
IAN JARVIS ◽  
ANDREW S. GALE ◽  
HUGH C. JENKYNS ◽  
MARTIN A. PEARCE

Carbon stable-isotope variation through the Cenomanian–Santonian stages is characterized using data for 1769 bulk pelagic carbonate samples collected from seven Chalk successions in England. The sections show consistent stratigraphic trends and δ13C values that provide a basis for high-resolution correlation. Positive and negative δ13C excursions and inflection points on the isotope profiles are used to define 72 isotope events. Key markers are provided by positive δ13C excursions of up to +2‰: the Albian/Cenomanian Boundary Event; Mid-Cenomanian Event I; the Cenomanian/Turonian Boundary Event; the Bridgewick, Hitch Wood and Navigation events of Late Turonian age; and the Santonian/Campanian Boundary Event. Isotope events are isochronous within a framework provided by macrofossil datum levels and bentonite horizons. An age-calibrated composite δ13C reference curve and an isotope event stratigraphy are constructed using data from the English Chalk. The isotope stratigraphy is applied to successions in Germany, France, Spain and Italy. Correlation with pelagic sections at Gubbio, central Italy, demonstrates general agreement between biostratigraphic and chemostratigraphic criteria in the Cenomanian–Turonian stages, confirming established relationships between Tethyan planktonic foraminiferal and Boreal macrofossil biozonations. Correlation of the Coniacian–Santonian stages is less clear cut: magnetostratigraphic evidence for placing the base of Chron 33r near the base of the Upper Santonian is in good agreement with the carbon-iso-tope correlation, but generates significant anomalies regarding the placement of the Santonian and Campanian stage boundaries with respect to Tethyan planktonic foraminiferal and nannofossil zones. Isotope stratigraphy offers a more reliable criterion for detailed correlation of Cenomanian–Santonian strata than biostratigraphy. With the addition of Campanian δ13C data from one of the English sections, a composite Cenomanian–Campanian age-calibrated reference curve is presented that can be utilized in future chemostratigraphic studies.The Cenomanian–Campanian carbon-isotope curve is remarkably similar in shape to supposedly eustatic sea-level curves: increasing δ13C values accompanying sea-level rise associated with transgression, and falling δ13C values characterizing sea-level fall and regression. The correlation between carbon isotopes and sea-level is explained by variations in epicontinental sea area affecting organic-matter burial fluxes: increasing shallow sea-floor area and increased accommodation space accompanying sea-level rise allowed more efficient burial of marine organic matter, with the preferential removal of 12C from the marine carbon reservoir. During sea-level fall, reduced seafloor area, marine erosion of previously deposited sediments, and exposure of basin margins led to reduced organic-carbon burial fluxes and oxidation of previously deposited organic matter, causing falling δ13C values. Additionally, drowning of carbonate platforms during periods of rapid sea-level rise may have reduced the global inorganic relative to the organic carbon flux, further enhancing δ13C values, while renewed platform growth during late transgressions and highstands prompted increased carbonate deposition. Variations in nutrient supply, changing rates of oceanic turnover, and the sequestration or liberation of methane from gas hydrates may also have played a role in controlling carbon-isotope ratios.

2013 ◽  
Vol 9 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
M. Hermoso ◽  
F. Minoletti ◽  
P. Pellenard

Abstract. One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere–ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the oxygen availability in the water column whose nature has still to be determined through cyclostratigraphic analysis.


2010 ◽  
Vol 7 (6) ◽  
pp. 1973-1982 ◽  
Author(s):  
I. Tsandev ◽  
C. Rabouille ◽  
C. P. Slomp ◽  
P. Van Cappellen

Abstract. The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.


2013 ◽  
Vol 9 (4) ◽  
pp. 4365-4384 ◽  
Author(s):  
M. Hermoso ◽  
F. Minoletti ◽  
P. Pellenard

Abstract. One of the most elusive aspects of the Toarcian Oceanic Anoxic Event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the T-OAE (defined by the overarching positive trend in the carbon isotopes). In the present studied, we have attempted to establish a sequence stratigraphy framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by > 10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the Atmosphere–Ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the concentration of redox-sensitive elements such as iron or vanadium whose nature has still to be determined through cyclostratigraphic analysis.


2010 ◽  
Vol 7 (1) ◽  
pp. 879-903 ◽  
Author(s):  
I. Tsandev ◽  
C. Rabouille ◽  
C. P. Slomp ◽  
P. Van Cappellen

Abstract. The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep sea-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.


2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


2014 ◽  
Vol 11 (4) ◽  
pp. 6019-6037 ◽  
Author(s):  
M. L. Kirwan ◽  
G. R. Guntenspergen ◽  
J. A. Langley

Abstract. Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where ecosystems accumulate organic matter to build soil elevation and survive sea level rise. The long-term viability of marshes, and their carbon pools, depends in part on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of soil organic matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3 year period. We find a moderate increase in decay rate at warmer temperatures (3–6% °C−1, Q10 = 1.3–1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and enhance their ability to survive sea level rise.


2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


Sign in / Sign up

Export Citation Format

Share Document