Geochemistry and geochronology of OIB-type, Early Jurassic magmatism in the Zhangguangcai range, NE China, as a result of continental back-arc extension

2018 ◽  
Vol 158 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Guangying Feng ◽  
Yildirim Dilek ◽  
Xiaolu Niu ◽  
Fei Liu ◽  
Jingsui Yang

AbstractThe Zhangguangcai Range in the Xing’an Mongolian Orogenic Belt, NE China, contains Early Jurassic (c. 188 Ma) Dabaizigou (DBZG) porphyritic dolerite. Compared with other island-arc mafic rocks, the DBZG dolerite is characterized by high trace-element contents, relatively weak Nb and Ta enrichments, and no Zr, Hf or Ti depletions, similar to OIB-type rocks. Analysed rocks have (87Sr/86Sr)i ratios of 0.7033–0.7044, relatively uniform positive ɛNd(t) values of 2.3–3.2 and positive ɛHf(t) values of 8.5–17.1. Trace-element and isotopic modelling indicates that the DBZG mafic rocks were generated by partial melting of asthenospheric mantle under garnet- to spinel-facies conditions. The occurrence of OIB-like mafic intrusion suggests significant upwelling of the asthenosphere in response to lithospheric attenuation caused by continental rifting. These processes occurred in an incipient continental back-arc environment in the upper plate of a palaeo-Pacific slab subducting W–NW beneath East Asia.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-22
Author(s):  
Pierre Jutras ◽  
J. Brendan Murphy ◽  
Dennis Quick ◽  
Jaroslav Dostal

Abstract Middle to Upper Ordovician volcanic rocks in the Arisaig area of Nova Scotia, Canada, constitute the only known record of volcanism in West Avalonia during that interval. Hence, they have been extensively studied to test paleocontinental reconstructions that consistently show Avalonia as a drifting microcontinent during that period. Identification of volcanic rocks with an intermediate composition (the new Seaspray Cove Formation) between upper Darriwilian bimodal volcanic rocks of the Dunn Point Formation and Sandbian felsic pyroclastic rocks of the McGillivray Brook Formation has led to a reevaluation of magmatic relationships in the Ordovician volcanic suite at Arisaig. Although part of the same volcanic construction, the three formations are separated by significant time-gaps and are shown to belong to three distinct magmatic subsystems. The tectonostratigraphic context and trace element contents of the Dunn Point Formation basalts suggest that they were produced by the high-degree partial melting of an E-MORB type source in a back-arc extensional setting, whereas trace element contents in intermediate rocks of the Seaspray Cove Formation suggest that they were produced by the low-degree partial melting of a subduction-enriched source in an arc setting. The two formations are separated by a long interval of volcanic quiescence and deep weathering, during which time the back-arc region evolved from extension to shortening and was eventually onlapped by arc volcanic rocks. Based on limited field constraints, paleomagnetic and paleontological data, this progradation of arc onto back-arc volcanic rocks occurred from the north, where an increasingly young Iapetan oceanic plate was being subducted at an increasingly shallow angle. Partial subduction of the Iapetan oceanic ridge is thought to have subsequently generated slab window magmatism, thus marking the last pulse of subduction-related volcanism in both East and West Avalonia.


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Author(s):  
Yue Qi ◽  
Qiang Wang ◽  
Gang-jian Wei ◽  
Xiu-Zheng Zhang ◽  
Wei Dan ◽  
...  

Diverse rock types and contrasting geochemical compositions of post-collisional mafic rocks across the Tibetan Plateau indicate that the underlying enriched lithospheric mantle is heterogeneous; however, how these enriched mantle sources were formed is still debated. The accreted terranes within the Tibetan Plateau experienced multiple stages of evolution. To track the geochemical characteristics of their associated lithospheric mantle through time, we can use mantle-derived magmas to constrain the mechanism of mantle enrichment. We report zircon U-Pb ages, major and trace element contents, and Sr-Nd isotopic compositions for Early Cretaceous and late Eocene mafic rocks in the southern Qiangtang terrane. The Early Cretaceous Baishagang basalts (107.3 Ma) are characterized by low K2O/Na2O (<1.0) ratios, arc-like trace element patterns, and uniform Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7067−0.7073, εNd(t) = −0.4 to −0.2]. We suggest that the Baishagang basalts were derived from partial melting of enriched lithospheric mantle that was metasomatized by subducted Bangong−Nujiang oceanic material. We establish the geochemistry of the pre-collisional enriched lithospheric mantle under the southern Qiangtang terrane by combining our data with those from other Early Cretaceous mafic rocks in the region. The late Eocene (ca. 35 Ma) post-collisional rocks in the southern Qiangtang terrane have low K2O/Na2O (<1.0) ratios, and their major element, trace element, and Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7042−0.7072, εNd(t) = −4.5 to +1.5] are similar to those of the Early Cretaceous mafic rocks. Based on the distribution, melting depths, and whole-rock geochemical compositions of the Early Cretaceous and late Eocene mafic rocks, we argue that the primitive late Eocene post-collisional rocks were derived from pre-collisional enriched lithospheric mantle, and the evolved samples were produced by assimilation and fractional crystallization of primary basaltic magma. Asthenosphere upwelling in response to the removal of lithospheric mantle induced the partial melting of enriched lithospheric mantle at ca. 35 Ma.


2020 ◽  
Author(s):  
Wangchun Xu ◽  
et al.

Table S1: Zircon LA-ICP-MS U-Pb data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S2: Zircon LA-ICP-MS REE (ppm) data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S3: Whole-rock major (%) and trace (ppm) element data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S4: Zircon LA-MC-ICP-MS Lu-Hf data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S5: Whole-rock Sr-Nd isotopic data of the early Jurassic mafic rocks from the Kaqiong microblock.


1990 ◽  
Vol 27 (9) ◽  
pp. 1182-1193 ◽  
Author(s):  
A. Dogan Paktunc

Abundant mafic rocks comprising basalts and gabbros occur in the Bathurst Camp, a complexly deformed Ordovician terrane in northeastern New Brunswick. The mafic rocks form a consanguineous suite of aphyric lavas, subvolcanic sills, and (or) dikes. Gabbros and basalts have somewhat similar major-element compositions but differ in terms of their trace-element contents. Medium-grained gabbros display tholeiitic compositions, whereas basalts and fine-grained gabbros have alkalic affinities. In general, trace-element abundances indicate an enriched source region for the Bathurst mafic rocks. Trace-element characteristics of the tholeiitic group point to a transitional setting going from back-arc to ocean basin, whereas the alkalic group has geochemical characteristics in common with within-plate basalts. Mixing between magmas of these contrasting settings could explain some of the trace-element characteristics of both groups. The back-arc-basin setting appears to be ensialic and is characterized by the absence of an underlying subducted slab during the formation of the basin. The tectonic reason for rifting in such a case could be the strike separation along a series of en echelon faults similar to those of the Gulf of California. Calc-alkaline characteristics of the upper mantle underlying the basin seem to have been inherited from southeasterly subduction of the proto-Atlantic Ocean in Early to Middle Ordovician times.


2020 ◽  
Author(s):  
Wangchun Xu

Table S1: Zircon LA-ICP-MS U-Pb data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S2: Zircon LA-ICP-MS REE (ppm) data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S3: Whole-rock major (%) and trace (ppm) element data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S4: Zircon LA-MC-ICP-MS Lu-Hf data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S5: Whole-rock Sr-Nd isotopic data of the early Jurassic mafic rocks from the Kaqiong microblock.


2020 ◽  
Author(s):  
Wangchun Xu ◽  
et al.

Table S1: Zircon LA-ICP-MS U-Pb data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S2: Zircon LA-ICP-MS REE (ppm) data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S3: Whole-rock major (%) and trace (ppm) element data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S4: Zircon LA-MC-ICP-MS Lu-Hf data of the early Jurassic mafic rocks from the Kaqiong microblock; Table S5: Whole-rock Sr-Nd isotopic data of the early Jurassic mafic rocks from the Kaqiong microblock.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 372
Author(s):  
Anqi Mao ◽  
Deyou Sun ◽  
Jun Gou ◽  
Han Zheng

The subduction processes and geodynamic scenarios of the late-stage southward subduction of the Mongol–Okhotsk oceanic slab since the Early Jurassic are subjects of great debate. This contribution presents new U–Pb zircon dating, trace element geochemistry, Ti-in zircon geothermometry, and Lu–Hf isotopes of zircon, as well as bulk-rock geochemical data for Early–Middle Jurassic intrusive rocks in the Erguna Block, NE China. Approximately 181–198 Ma monzogranites and ca. 162–174 Ma quartz monzonites were identified in the block. The Early Jurassic monzogranites are high-K calc-alkaline I-type granites, which display moderately concave-upward rare earth element (REE) patterns with slightly negative Eu anomalies, and low zircon crystallization temperatures. The Middle Jurassic quartz monzonites have low Yb and Y concentrations, high Sr/Y ratios, and strong high field strength elements (HFSEs) depletions, that are in excellent agreement with adakitic rocks. They exhibit right-sloping REE patterns with negligible Eu anomalies, and a wide range of zircon crystallization temperatures. The intrusions yield εHf(t) values between −4.1 to +4.8 and juvenile two-stage model (TDM2) ages varying from 918–1488 Ma. The geochemical and isotopic signatures suggest that the monzogranites were likely derived by the partial melting of K-rich meta-basalts within the lower part of a juvenile crust that had medium-thickness (≤40 km), with the involvement of minor mantle materials. Whereas, the quartz monzonites were possibly produced by partial melting of a thickened continental lower crust (≥50 km). The Mongol–Okhotsk tectonic regime played a dominant role in accounting for their formation. An Andean-type continental arc setting was developed during the Early–Middle Jurassic, with gradual thickening of the continental crust. The significant crustal thickening may reach its ultimate stage at ca. 162–174 Ma, which marks the tectonic transition from compression to extension. The southward subduction beneath the Erguna Block was continuous and stable during the Early Jurassic. Rollback of the subducted slab occurred at ca. 174–177 Ma, followed by moderate magmatic activities represented by adakitic rocks.


1997 ◽  
Vol 34 (9) ◽  
pp. 1272-1285 ◽  
Author(s):  
T. E. Smith ◽  
P. E. Holm ◽  
N. M. Dennison ◽  
M. J. Harris

Three intimately interbedded suites of volcanic rocks are identified geochemically in the Burnt Lake area of the Belmont Domain in the Central Metasedimentary Belt, and their petrogenesis is evaluated. The Burnt Lake back-arc tholeiitic suite comprises basalts similar in trace element signature to tholeiitic basalts emplaced in back-arc basins formed in continental crust. The Burnt Lake continental tholeiitic suite comprises basalts and andésites similar in trace element composition to continental tholeiitic sequences. The Burnt Lake felsic pyroclastic suite comprises rhyolitic pyroclastics having major and trace element compositions that suggest that they were derived from crustal melts. Rare earth element models suggest that the Burnt Lake back-arc tholeiitic rocks were formed by fractional crystallization of mafic magmas derived by approximately 5% partial melting of an amphibole-bearing depleted mantle, enriched in light rare earth elements by a subduction component. The modelling also suggests that the Burnt Lake continental tholeiitic rocks were formed by contamination – fractional crystallization of mixtures of mafic magmas, derived by ~3% partial melting of the subduction-modified source, and rhyolitic crustal melts. These models are consistent with the suggestion that the Belmont Domain of the Central Metasedimentary Belt formed as a back-arc basin by attenuation of preexisting continental crust above a westerly dipping subduction zone.


Sign in / Sign up

Export Citation Format

Share Document