Protection of Data Privacy in Computer Systems

1986 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
Benjamin G. Walker

The protection of data in computer-based systems is a serious and growing problem. It is one of the most challenging technical problems in the field of computer science today. The objective of this paper is to provide a technical overview of the problem and to suggest some steps that need to be taken to assure progress in the field toward cost-effective systems that provide adequate protection.The Problem: Protecting the privacy of data in computer systems involves establishing safeguards against accidental disclosure as well as protection against a deliberate attack. During system failures and restart procedures errors in coding procedures often cause data to be stored in the wrong files or put sensitive data out on the printer along with diagnostic information intended for maintenance personnel. You have probably had the experience at some time of being wired into someone else's telephone conversation.

Author(s):  
Desam Vamsi ◽  
Pradeep Reddy

Security is the primary issue nowadays because cybercrimes are increasing. The organizations can store and maintain their data on their own, but it is not cost effective, so for convenience they are choosing cloud. Due to its popularity, the healthcare organizations are storing their sensitive data to cloud-based storage systems, that is, electronic health records (EHR). One of the most feasible methods for maintaining privacy is homomorphism encryption (HE). HE can combine different services without losing security or displaying sensitive data. HE is nothing but computations performed on encrypted data. According to the type of operations and limited number of operations performed on encrypted data, it is categorized into three types: partially homomorphic encryption (PHE), somewhat homomorphic encryption (SWHE), fully homomorphic encryption (FHE). HE method is very suitable for the EHR, which requires data privacy and security.


Author(s):  
Sabīne Grīnberga

Abstract Digital technologies have opened a large set of opportunities for new electronic services (e-commerce, e-health, e-studies etc.). There are many considerations that need to be made when programmers are building new application software or system software. The software needs to be attractive enough that people want to look at it. It also needs to contain all necessary information that developers want to share with their readers (customers, users) in order to help them achieve the objective for which they came to their website, use their software, or interact with their teaching packages. The oversupply of e-services products has created a need for usability research and development. “Usability means making products and systems easier to use, and matching them more closely to user needs and requirements”. Usability is a key concept of the human-computer interface and is concerned with making computer systems easy to learn and easy to use through a user-centered design process. The in-depth understanding of usability concepts and processes are critical for large-scale acceptance of new e-services and knowledge productivity. Poorly designed software can be extremely annoying to users. Smith and Mayes state that „usability is now recognised as a vital determining factor in the success of any new computer system or computer-based service”. Studies have shown that the main health problems of computer users are repetitive strain injuries, visual discomfort and stress-related disorders. Beside other risk factors, such as poor workstation design, uncomfortable work postures, long hours of computer use every day, stress, etc., also poor design and usability of the computer systems, as well as computer technical problems, add to the pressure felt by the user, which may in turn cause stress-related disorders.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Qi Dou ◽  
Tiffany Y. So ◽  
Meirui Jiang ◽  
Quande Liu ◽  
Varut Vardhanabhuti ◽  
...  

AbstractData privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interpreting chest CT, which can be readily used in the assessment and management of the disease. This paper demonstrates the feasibility of a federated learning method for detecting COVID-19 related CT abnormalities with external validation on patients from a multinational study. We recruited 132 patients from seven multinational different centers, with three internal hospitals from Hong Kong for training and testing, and four external, independent datasets from Mainland China and Germany, for validating model generalizability. We also conducted case studies on longitudinal scans for automated estimation of lesion burden for hospitalized COVID-19 patients. We explore the federated learning algorithms to develop a privacy-preserving AI model for COVID-19 medical image diagnosis with good generalization capability on unseen multinational datasets. Federated learning could provide an effective mechanism during pandemics to rapidly develop clinically useful AI across institutions and countries overcoming the burden of central aggregation of large amounts of sensitive data.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Hua Dai ◽  
Hui Ren ◽  
Zhiye Chen ◽  
Geng Yang ◽  
Xun Yi

Outsourcing data in clouds is adopted by more and more companies and individuals due to the profits from data sharing and parallel, elastic, and on-demand computing. However, it forces data owners to lose control of their own data, which causes privacy-preserving problems on sensitive data. Sorting is a common operation in many areas, such as machine learning, service recommendation, and data query. It is a challenge to implement privacy-preserving sorting over encrypted data without leaking privacy of sensitive data. In this paper, we propose privacy-preserving sorting algorithms which are on the basis of the logistic map. Secure comparable codes are constructed by logistic map functions, which can be utilized to compare the corresponding encrypted data items even without knowing their plaintext values. Data owners firstly encrypt their data and generate the corresponding comparable codes and then outsource them to clouds. Cloud servers are capable of sorting the outsourced encrypted data in accordance with their corresponding comparable codes by the proposed privacy-preserving sorting algorithms. Security analysis and experimental results show that the proposed algorithms can protect data privacy, while providing efficient sorting on encrypted data.


Author(s):  
Robert Rice ◽  
Rand Decker ◽  
Newel Jensen ◽  
Ralph Patterson ◽  
Stanford Singer

The growth of winter travel on alpine roads in the western United States, a result of the demand for reliable winter access, has increased the hazard to motorists and highway maintenance personnel from snow avalanches. Configurations are presented for systems that can detect and provide, in real time, warnings to motorists and highway maintainers of roadway avalanches. These warnings include on-site traffic control signing, in-vehicle audio alarms for winter maintenance vehicles, and notifying maintenance facilities or centralized agency dispatchers. These avalanche detection and warning systems can detect an existing avalanche and use the avalanche’s remaining time of descent to initiate on-site alarms. Alternatively, real-time knowledge and notification of the onset of avalanching may be used to proactively manage the evolving hazard over an affected length or corridor of highway. These corridors can be several tens of kilometers in length and may be very remote, low-volume rural highways. As a consequence, these detection and warning systems must be cost-effective alternatives to existing avalanche hazard reduction technology. Results and experiences from the winters of 1997–1998 and 1998–1999 are presented, along with recommendations and criteria for future deployment of these automated natural hazard reduction systems for rural transportation corridors.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Run Xie ◽  
Chanlian He ◽  
Dongqing Xie ◽  
Chongzhi Gao ◽  
Xiaojun Zhang

With the advent of cloud computing, data privacy has become one of critical security issues and attracted much attention as more and more mobile devices are relying on the services in cloud. To protect data privacy, users usually encrypt their sensitive data before uploading to cloud servers, which renders the data utilization to be difficult. The ciphertext retrieval is able to realize utilization over encrypted data and searchable public key encryption is an effective way in the construction of encrypted data retrieval. However, the previous related works have not paid much attention to the design of ciphertext retrieval schemes that are secure against inside keyword-guessing attacks (KGAs). In this paper, we first construct a new architecture to resist inside KGAs. Moreover we present an efficient ciphertext retrieval instance with a designated tester (dCRKS) based on the architecture. This instance is secure under the inside KGAs. Finally, security analysis and efficiency comparison show that the proposal is effective for the retrieval of encrypted data in cloud computing.


2016 ◽  
Vol 13 (1) ◽  
pp. 204-211
Author(s):  
Baghdad Science Journal

The internet is a basic source of information for many specialities and uses. Such information includes sensitive data whose retrieval has been one of the basic functions of the internet. In order to protect the information from falling into the hands of an intruder, a VPN has been established. Through VPN, data privacy and security can be provided. Two main technologies of VPN are to be discussed; IPSec and Open VPN. The complexity of IPSec makes the OpenVPN the best due to the latter’s portability and flexibility to use in many operating systems. In the LAN, VPN can be implemented through Open VPN to establish a double privacy layer(privacy inside privacy). The specific subnet will be used in this paper. The key and certificate will be generated by the server. An authentication and key exchange will be based on standard protocol SSL/TLS. Various operating systems from open source and windows will be used. Each operating system uses a different hardware specification. Tools such as tcpdump and jperf will be used to verify and measure the connectivity and performance. OpenVPN in the LAN is based on the type of operating system, portability and straightforward implementation. The bandwidth which is captured in this experiment is influenced by the operating system rather than the memory and capacity of the hard disk. Relationship and interoperability between each peer and server will be discussed. At the same time privacy for the user in the LAN can be introduced with a minimum specification.


2015 ◽  
pp. 2068-2076
Author(s):  
James R. Stachowiak

Computer-based Assistive Technology (AT) has had a powerful effect on people with disabilities in the areas of reading, writing, communicating, and accessing information. One of the roadblocks for use has always been the expense of AT. Advancements in computing and mobile technology, however, are making some technology more readily available, accessible, and cost effective for people with disabilities. Computer operating systems, for example, now contain features to magnify screens for reading and in the entering of text. The mobile movement of smartphones, e-readers, and tablets has also been changing the way people with disabilities access information. The capabilities of these devices combined with the immediate availability, affordability, and ease of use, has been making the world more accessible for people with disabilities, and with mobile devices increasingly becoming a necessity for most, this trend is anticipated to only continue.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4110
Author(s):  
Matei-Sorin Axente ◽  
Ciprian Dobre ◽  
Radu-Ioan Ciobanu ◽  
Raluca Purnichescu-Purtan

With the rate at which smartphones are currently evolving, more and more of human life will be contained in these devices. At a time when data privacy is extremely important, it is crucial to protect one’s mobile device. In this paper, we propose a new non-intrusive gait recognition based mechanism that can enhance the security of smartphones by rapidly identifying users with a high degree of confidence and securing sensitive data in case of an attack, with a focus on a potential architecture for such an algorithm for the Android environment. The motion sensors on an Android device are used to create a statistical model of a user’s gait, which is later used for identification. Through experimental testing, we prove the capability of our proposed solution by correctly classifying individuals with an accuracy upwards of 90% when tested on data recorded during multiple activities. The experiments, conducted on a low sampling rate and at short time intervals, show the benefits of our solution and highlight the feasibility of an efficient gait recognition mechanism on modern smartphones.


Sign in / Sign up

Export Citation Format

Share Document