Soil physical environment affecting root growth of upland rice

1979 ◽  
Vol 93 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Kar ◽  
S. B. Varade ◽  
B. P. Ghildyal

SUMMARYRoot growth of rice (Oryza saliva L.) is frequentlyinhibited by an adverse physical environment resulting from high moisture stress and strength of soilunder upland conditions, and the effects are often reflected in poor performance of the crop. This necessitates a critical understanding of rice root growth under varying soil physical conditions.The growth responses of the rice root system to the interaction between moisture regime and bulk density of soil as well as to the induced soil physical characteristics were assessed under controlled glasshouse conditions. Four moisture regimes: 0 (M1), 0–20 (M2), 0–350(M3), and 350–10000 (M4) mb, were superimposed on low, medium and high bulk density treatments in clay, loam and sandy loam soils. The soil physical environment was characterized by measurements of moisture distribution, penetrationenergy and oxygen diffusion rate in soils as functions of depth.A low moisture stress of 20 mb in low density soils favoured rice root growth. In low density soils, even though the number of roots at the base (proximal end) was maximum under M1, the depth of penetration, volume and dry weight of root were significantly more underM2 than under M1; M3 and M4. Irrespective of bulk density, even though oxygen diffusion rates in soils under M3 and M4 were greater than those under M1 and M2, the number of roots at the base, volume and dry weight of the root system decreased under M3 and M4 owing to low moisture content and high penetration energy in the surface layer (0–5 cm) of all the soil types. Lower moisture content and higher penetration energy at higher bulk densities of the soil types significantly reduced the root growth and especially the depth of penetration.

HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 40-48 ◽  
Author(s):  
D.C. Ferree ◽  
J.G. Streeter ◽  
Y. Yuncong

Container-grown apple (Malus ×domestica Borkh.) trees were exposed to soil compaction created by changing soil bulk density (SBD) to determine the effect of compaction levels, rootstock, and moisture stress on mineral nutrition, leaf gas exchange, and foliar carbohydrate levels. With SBD of 1.0, 1.2, and 1.4 g·cm-3, there was no interaction of rootstock and soil compaction for growth of `Melrose' trees on nine rootstocks. Trees grown in a SBD of 1.2 g·cm-3 had a greater dry weight than trees at 1.4 g·cm-3 bulk density. Increasing SBD to 1.5 g·cm-3 reduced shoot length, total leaf area, leaf size, and dry weight of leaves, shoots, and roots. The interaction between rootstock and SBD was significant and total dry weight of `B.9', `G.16', `G.30', and `M.7 EMLA' was less influenced by 1.5 g·cm-3 soil than trees on `M.26 EMLA' and `MM.106 EMLA'. Withholding moisture for 10 days at the end of a 70-day experiment caused 8% to 25% reduction in growth in a non-compacted (1.0 g·cm-3) soil with much less effect in a compacted soil. Prior to imposing the moisture stress by withholding water, net photosynthesis (Pn) was reduced 13% and transpiration (E) 19% by increasing bulk density to 1.5 g·cm-3. Following 7 days of moisture stress in non-compacted soil, Pn and E were reduced 49% and 36%, respectively, with no such reductions in the compacted soil. Increasing SBD to 1.5 g·cm-3 caused a decrease in the leaf concentration of quinic acid, myoinositol, and sucrose and an increase in fructose and glucose. Trees growing in 1.5 g·cm-3 had reduced concentrations of N, Ca, Mg, Mn, Na, and Zn, and increased P, K, B, and Fe in leaves.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1250-1254 ◽  
Author(s):  
D.C. Ferree ◽  
J.G. Streeter

Container-grown `Chambourcin' grapevines were exposed to soil compaction created by changing soil bulk density to determine the effect of levels of compaction, rootstocks and moisture stress on mineral nutrition, leaf gas exchange and foliar carbohydrate levels. Shoot growth, leaf area, number of inflorescences and leaf dry weight decreased linearly as soil bulk density increased with the effects being significant above 1.4 g·cm-3. The early season leaf area was reduced 40% in the second season, but later leaves were unaffected by a soil bulk density of 1.5 g·cm-3. Net photosynthesis (Pn) and transpiration (E) increased linearly with increasing soil bulk density the first year, but the second year a nonlinear pattern was observed with highest rates at 1.3 and 1.4 g·cm-3. Soil bulk density of 1.5 g·cm-3 reduced number of leaves, leaf area and shoot length and advanced bloom 16 days on `Chambourcin' vines on six rootstocks with no interaction of rootstock and soil compaction. Withholding water for 8 days reduced Pn and E in all treatments, with no effect on shoot length, leaf, stem and total dry weights. Moisture stress in the noncompacted soil caused a reduction in leaf concentration of fructose, glucose and myo-inositol, but moisture stress had no effect in the compacted soil. Moisture stress caused a reduction in sucrose in both compacted and noncompacted soil. Compacting soil to a bulk density of 1.5 g·cm-3 was associated with an increase in leaf N, Ca, Mg, Al, Fe, Mn, Na, and Zn and a decrease in P, K, B, and Mo.


1978 ◽  
Vol 29 (3) ◽  
pp. 479 ◽  
Author(s):  
RA Richards ◽  
N Thurling

Two rapeseed species and cultivars within each of these species differed significantly with respect to the influence of variation in sowing date on growth, development and yield on two different soil types. Soil moisture stress, particularly after anthesis, was the major environmental factor affecting these processes. Grain yield declined markedly with later sowings in both species, and B. napus, despite its later maturity, was more tolerant of severe soil moisture deficits since its grain yield was consistently higher than B. campestris in the more stressed environments. The major distinguishing feature between species contributing most to this difference in yield was the pattern of dry matter accumulation. In B. campestris most of the dry weight of the plant was accumulated after anthesis when drought was most severe, whereas in B. napus dry weight accumulation occurred before anthesis. This resulted in a greater contribution of reserves accumulated by anthesis to grain-filling in B. napus. Most of the variation in seed yield resulted from differences in sowing dates and soil types. When these environmental effects were excluded, the main determinants of genotypic variation in yield were the numbers of pods and branches and harvest index in both species, growth rate in the post-anthesis phase in B. campestris, and plant weight and root/shoot ratio at anthesis in B. napus. Selection strategies for yield improvement in rapeseed growing in drought-stressed environments are discussed. _____________________ *Part I, Aust. J. Agric. Res., 29: 469 (1978).


1993 ◽  
Vol 23 (12) ◽  
pp. 2537-2547 ◽  
Author(s):  
J.T. Arnott ◽  
S.C. Grossnickle ◽  
P. Puttonen ◽  
A.K. Mitchell ◽  
R.S. Folk

The influence of short-day (9 h) and long-day photoperiods (18 h), and three levels of plant moisture stress (none and dried to predawn shoot water potentials of −1.0 or −1.8 MPa), applied for 7 weeks beginning in mid-July 1990, were studied on greenhouse-grown stecklings (rooted cuttings) of yellow cypress (Chamaecyparisnootkatensis (D. Don) Spach). A series of morphological and physiological measurements were made on the stecklings during and after the treatment period. Moisture stress significantly reduced steckling shoot growth and shoot dry weight by lowering net photosynthesis rates, while short-day photoperiods did not. The most pronounced growth reductions occurred when the treatments were combined, but effects were short-lived, with shoot growth resuming soon after the treatments ended. The short-day and moisture-stress treatment had no significant effect on root dry weight, shoot/root ratio, or water balance ratio. The risk of using moisture stress to control shoot growth in the nursery was low; mortality did not occur until the stecklings had been without water for at least 9 days. Moisture-stress treatments increased steckling root growth potential but had little effect on osmotic adjustment, cell elasticity, dry weight or symplastic fractions, cuticular transpiration, resistance to plant water movement, and relative water content of the shoots; short-day treatments had no influence on any of these parameters. Short days and moisture stress, singly or combined, had little effect on steckling cold hardiness. Steckling gas exchange rates were reduced significantly by low root temperature. In a 6-week controlled-environment simulation of planting-site moisture conditions, no significant differences in steckling net photosynthesis, transpiration, or stomatal conductance were found among nursery treatments; those that had been subjected to moisture stress in the nursery had small growth increases after planting in both wet and dry soil moisture regimes. We conclude that shoot growth of yellow cypress stecklings was controlled in the nursery using 9-h photoperiods and −1.8 MPa predawn shoot water potentials. Improved cold hardiness of the stecklings was not achieved using these nursery cultural methods, but moisture stress did confer some measure of drought resistance immediately after treatment, with higher root growth potential and lower shoot mass.


1977 ◽  
Vol 7 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Stephen B. Horsley

Small black cherry (Prunusserotina Ehrh.) seedlings grow slowly and soon die in low-density cherry–maple (Acerrubrum L.) orchard stands colonized by a dense ground cover of bracken fern (Pteridiumaquilinum L.), wild oat grass (Danthoniacompressa Aust.), goldenrod (Solidagorugosa Ait.), and flat-topped aster (Asterumbellatus Mill.). Studies of orchard stand persistence indicated that allelopathic interference occurred between black cherry seedlings and the herbaceous ground-cover plants. Foliage extracts of fern, goldenrod, and aster inhibited seed germination; aster foliage extract inhibited both shoot and root growth of seedlings growing on cotyledonary reserves; foliage extracts of fern, grass, goldenrod, and aster and root washings of goldenrod and aster inhibited shoot growth and dry weight accumulation of seedlings that had exhausted cotyledonary reserves. Soil from the upper horizons of an orchard stand did not moderate the toxicity of the herbaceous foliage extracts or root washings.


HortScience ◽  
2011 ◽  
Vol 46 (6) ◽  
pp. 937-945 ◽  
Author(s):  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios ◽  
Glykeria Gogoula

A field study evaluated composted olive mill waste (OMC) as a soil amendment in Cynodon dactylon (bermudagrass; C4) turf establishment and maintenance. The study comprised two substudies, each of which had discrete goals: 1) an evaluation of OMC effects on overall bermudagrass growth over the course of 2.5 years when established by seed and subsequently from sprouting of existing rhizomes (2002 to 2004); and 2) a re-evaluation of OMC effects on bermudagrass establishment by seed (2003). Twenty-four plots (1.44 × 1.44 m) were filled with sandy-loam soil and supplemented with one of three OMC proportions (low= 12.5%, medium = 25%, and high = 50% by volume, indicated as substrates S:OMCL, S:OMCM, and S:OMCH, respectively), and non-amended soil served as a control (S). The study evaluated: 1) the substrate's chemical and physical characteristics, including bulk density, water retention curves, pH, and electrical conductivity (EC) measurements; 2) the establishment rate of C. dactylon, either by seed or by sprouting of existing rhizomes after dormancy as determined by measurements that included vertical detachment force (VDF), root growth, and substrate moisture; and 3) the growth rate of C. dactylon as determined through measurements of visual quality, clipping dry weight, root growth, and VDF. The results show that OMC decreased substrate pH in proportion to the OMC supplementation rate and increased EC only at the end of the study and only in the plots with the highest supplementation rate (S:OMCH). Water retention was improved by OMC incorporation except from S:OMCL, which increased water retention only at low tensions. Compared with soil alone, bulk density decreased by 13.5%, 19.7%, and 32.8% as the OMC rate increased, respectively, from 12.5% to 50%. The OMC rate of 50% v/v resulted in a minor reduction in plant visual quality during the cold periods but in a slight improvement during the warm periods. The clipping dry weights were increased by OMC amendments in 2003, which was considered a disadvantage because of the insignificant visual quality differences between substrates during the 2 study years. In 2004, the clipping yields were unaffected by OMC rate. Root dry weight response to OMC varied. For the highest OMC rate, root dry weight was lower during the cold and wet periods, greater during the first stages of bermudagrass establishment by seed, and similar compared with soil without OMC during turf establishment from the sprouting of existing rhizomes after dormancy. The highest OMC rate reduced resistance to vertical detachment force at four sampling dates (of six) during the 2002–2003 study, because the reduced root dry weight and/or increased moisture of the substrate facilitated bermudagrass detachment. In contrast, OMC-supplemented substrates resulted in increased VDF at the first sampling date of establishment both by seed (2003) and by rhizome sprouting after dormancy (2004). It was concluded that, when speedy establishment is imperative (such as in sod farms) or when irrigation is limited, an OMC rate of 50% by volume should be selected. In contrast, for sustainable bermudagrass growth, a rate of 12.5% by volume is preferred, because it increases the visual quality of the grass and root growth.


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wei Xin ◽  
Lina Zhang ◽  
Jiping Gao ◽  
Wenzhong Zhang ◽  
Jun Yi ◽  
...  

Abstract Background Nitrogen-based nutrients are the main factors affecting rice growth and development. Root systems play an important role in helping plants to obtain nutrients from the soil. Root morphology and physiology are often closely related to above-ground plant organs performance. Therefore, it is important to understand the regulatory effects of nitrogen (N) on rice root growth to improve nitrogen use efficiency. Results In this study, changes in the rice root traits under low N (13.33 ppm), normal N (40 ppm) and high N (120 ppm) conditions were performed through root morphology analysis. These results show that, compared with normal N conditions, root growth is promoted under low N conditions, and inhibited under high N conditions. To understand the molecular mechanism underlying the rice root response to low and high N conditions, comparative proteomics analysis was performed using a tandem mass tag (TMT)-based approach, and differentially abundant proteins (DAPs) were further characterized. Compared with normal N conditions, a total of 291 and 211 DAPs were identified under low and high N conditions, respectively. The abundance of proteins involved in cell differentiation, cell wall modification, phenylpropanoid biosynthesis, and protein synthesis was differentially altered, which was an important reason for changes in root morphology. Furthermore, although both low and high N can cause nitrogen stress, rice roots revealed obvious differences in adaptation to low and high N. Conclusions These results provide insights into global changes in the response of rice roots to nitrogen availability and may facilitate the development of rice cultivars with high nitrogen use efficiency through root-based genetic improvements.


Sign in / Sign up

Export Citation Format

Share Document