The effects of subsoil loosening and deep incorporation of nutrients on yield of broad beans, cabbage, leck, potatoes and red beet

1982 ◽  
Vol 98 (2) ◽  
pp. 297-306 ◽  
Author(s):  
D. A. Stone

SUMMARYExperiments were made on a sandy clay loam soil with five crops to determine the effects of thorough loosening of the subsoil and deep incorporation of nutrients on yields during the subsequent 4 years.Loosening to 0·9 m increased fresh-weight yields by between nil and 95% depending on the crop and season. Responses were still considerable 4 years after the initial loosening and there was no evidence of any decline with time. Deep incorporation of nutrients did not improve yields.Loosening gave a durable increase in the volume of coarse pores and decreases in bulk density and penetrometer resistance. It also nearly doubled the rate of root extension when estimates were made for one crop, consistently increased water extraction from below 30 cm and, on occasion, reduced plant water stress.It is concluded that most of the benefits from deep loosening resulted from improvements i the rate at which plants could extract water rather than nutrients from the subsoil.

1972 ◽  
Vol 52 (3) ◽  
pp. 477-483 ◽  
Author(s):  
H. F. MIRREH ◽  
J. W. KETCHESON

Cylinders of a clay loam soil were adjusted to different bulk density and matric pressure combinations to study soil resistance to a penetrating probe. Regression analysis of the penetrometer data produced no evidence to reject a regression model of the form Y = β0X0 + β1X1 + β2X2 + β3X12 + β4X22 + β5X1X2 (where Y = penetrometer resistance, X1 = bulk density, X2 = matric pressure). A three-dimensional plot of the generated soil resistance values was constructed to illustrate the nature of the interaction. At any one bulk density in the range 1.0–1.5 g/cc, soil resistance values tended to pass through a maximum as soil moisture was removed over the matric pressure range 1.0–8.0 atm. The tendency was most pronounced at the lower bulk densities. Implications on root growth and soil management are briefly discussed.


2020 ◽  
Vol 8 (6) ◽  
pp. 1038-1041
Author(s):  
C Bharathi ◽  
P Murali Arthanari ◽  
C Chinnusamy

2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Haroon Shahzad ◽  
Muhammad Iqbal ◽  
Noman Latif ◽  
Muhammad Arshad Khan ◽  
Qudrat Ullah Khan

2017 ◽  
Vol 9 (2) ◽  
pp. 720-729
Author(s):  
Sanjay T. Satpute ◽  
Man Singh

The understanding of soil and nutrient dynamics under drip fertigation is relevant for crop production as well as water and nutrient management. The aim of this study was to generate information about the distribution of phosphorus (P) under different fertigation strategies for onion production on sandy clay loam soil during 2007-2008 to 2008-2009. The study involved field experiment, laboratory analysis and modeling of P distribution. The phosphorus distribution data in the field were collected, analyzed and used to calibrate and validate the solute transport model HYDRUS-2D for sandy clay loam soil. The performance of HYDRUS-2D was evaluated by comparing its simulated values with the observed values of soil moisture and nutrient concentration. The coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) were used as model performance indicators. The range of R2 between 0.72-0.99 for water as well as nutrient distribution indicates good correlation between the observed and simulated values. The MAE and RMSE values for water and nutrient distribution were in between 0.0009 to 0.0039 which indicated the accuracy of the model. From these results, it can be concluded that the model is performing well for predicting the P concentration in the soil as well as the soil moisture distribution for onion crop grown under sandy clay loam. The model was also validated for water and phosphorus distribution with the observed values at the end of the crop season and found to be performing well. The HYDRUS-2D model may be used to carry out simulations for different soil types and with different fertigation and irrigation strategies for developing guidelines.


Geoderma ◽  
2018 ◽  
Vol 327 ◽  
pp. 13-24 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Debashis Chakraborty ◽  
Pramila Aggarwal ◽  
Ranjan Bhattacharyya ◽  
Ravender Singh

Sign in / Sign up

Export Citation Format

Share Document