Studies on growth and symbiotic nitrogen fixation of Rhizobium of Vigna radiata under stress conditions

1984 ◽  
Vol 102 (2) ◽  
pp. 399-404
Author(s):  
R. Rai ◽  
V. Prasad

SummaryOne fast-growing acid-producing Rhizobium strain 995 of Vigna radiata was screened for growth behaviour in acid, saline and alkaline media. It grew well in yeast-extract mannitol broth of wide pH range as well as varying concentrations of NaCl, Na2SO4 and MnCl2. Variation in nodulation and N2-fixation efficiency occurred on different varieties of green gram, while strain characteristics were not affected by soil stress.

1982 ◽  
Vol 98 (3) ◽  
pp. 487-492 ◽  
Author(s):  
R. Rai ◽  
V. Prasad ◽  
T. N. Prasad ◽  
S. B. Kumar ◽  
B. S. Srivastava

SUMMARYA strain ofRhizobiumisolated from the root nodule of lentil was caused to produce mutants and screened on a medium of pH 4·5. Five mutant colonies ofRhizobiumwere isolated from lentil which differed in growth over a pH range 4·5–7·5. Strains differed in their growth in acidic and calcareous soils and also in their effectiveness of N fixation.


1991 ◽  
Vol 56 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Juan A. Squella ◽  
Luis J. Nuñez-Vergara ◽  
Hernan Rodríguez ◽  
Amelia Márquez ◽  
Jose M. Rodríguez-Mellado ◽  
...  

Five N-p-phenyl substituted benzamidines were studied by DC and DP polarography in a wide pH range. Coulometric results show that the overall processes are four-electron reductions. Logarithmic analysis of the waves indicate that the process are irreversible. The influence of the pH on the polarographic parameters was also studied. A UV spectrophotometric study was performed in the pH range 2-13. In basic media some variations in the absorption bands were observed due to the dissociation of the amidine group. A determination of the pK values was made by deconvolution of the spectra. Correlations of both the electrochemical parameters and spectrophotometric pK values with the Hammett substituent constants were obtained.


2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sanjiao Wang ◽  
Tiantian Lu ◽  
Qiang Xue ◽  
Ke Xu ◽  
Guojun Cheng

Author(s):  
Manoj Kumar Panjwani ◽  
Qing Wang ◽  
Yueming Ma ◽  
Yuxuan Lin ◽  
Feng Xiao ◽  
...  

The development of a heterogeneous Fenton-like catalyst, possessing high degradation efficiency in a wide pH range, is crucial for wastewater treatment. The Fe-Mn-SiO2 catalyst was designed, and prepared by a...


Sign in / Sign up

Export Citation Format

Share Document