Inheritance of high oleic acid content in the seed oil of mutant Ethiopian mustard lines and its relationship with erucic acid content

2007 ◽  
Vol 145 (4) ◽  
pp. 353-365 ◽  
Author(s):  
M. DEL RÍO-CELESTINO ◽  
R. FONT ◽  
A. DE HARO-BAILÓN

SUMMARYEthiopian mustard (Brassica carinata) genotypes with different contents of oleic acid (C18:1) in the seed oil could be useful for food and industrial applications. The objectives of the present research were to study the inheritance of high C18:1 in the seed oil of different lines of Ethiopian mustard and its relationship with erucic acid content (C22:1). The low C18:1/high C22:1 mutant line L-1806, the high C18:1/high C22:1 mutant line L-482, the high C18:1/low C22:1 mutant line L-2890 and the low C18:1/very high C22:1 mutant line L-1630 were isolated after a chemical mutagen treatment of C-101 seeds (about 94 g C18:1/kg and 450 g C22:1/kg). The high C18:1/zero C22:1 line L-25X-1 was obtained by interspecific crosses of Ethiopian mustard with rapeseed and Indian mustard. Plants of lines L-2890×C-101, L-482×L-2890, L-1630×L-25X-1, L-1630×L-2890 and L-482×L-1806 were reciprocally crossed and F2 and the BC1F1 generations were obtained. Cytoplasmic effects were not observed in any of the crosses. The segregation pattern in F2 and BC1F1 populations differed in the crosses studied. The inheritance of C18:1 content in crosses segregating for this fatty acid was that expected for one (crosses between L-482×L-1806), two (L-2890×C-101) or three (L-1630×L-2890, L-1630×L-25X-1 and L-482×2890) loci. Oleic acid segregation indicated control of accumulation by two segregating genetic systems, one acting on chain elongation from C18:1 to C22:1 and the other involving desaturation from C18:1 to linoleic acid (C18:2). Accumulations of C18:1 and C22:1 were influenced by the same loci (M1, M2, E1 and E2), which control the chain elongation steps leading from C18:1 to C22:1. In addition, C18:1 was influenced by one additional locus (tentatively named OL) involved in control of desaturation of C18:1 to form C18:2. The genetic constitution of the parent lines would be OlOlE1E1E2E2m1m1m2m2 for L-2890, OlOlE1E1E2E2M1M1M2M2 for C-101, ololE1E1E2E2M1M1M2M2 for L-1630, OlOle1e1e2e2M1M1M2M2 for L-25X-1, ol1ol1E1E1E2E2M1M1M2M2 for L-482 and Ol1Ol1E1E1E2E2M1M1M2M2 for L-1806. Transgressive recombinants were obtained from the cross L-1630×L-25X-1, with about three-fold increase of the C18:1 content of the parents (>643 g/kg) and free of C22:1 content, which represent a high potential for commercial exploitation.

2006 ◽  
Vol 114 (1) ◽  
pp. 67-80 ◽  
Author(s):  
D. Qiu ◽  
C. Morgan ◽  
J. Shi ◽  
Y. Long ◽  
J. Liu ◽  
...  

Helia ◽  
2011 ◽  
Vol 34 (55) ◽  
pp. 69-74 ◽  
Author(s):  
Y. Demurin ◽  
O. Borisenko

2021 ◽  
Author(s):  
Ronaldo Silva Gomes ◽  
Ronaldo Machado Júnior ◽  
Cleverson Freitas de Almeida ◽  
Rebeca Lourenço de Oliveira ◽  
Rafael Ravaneli Chagas ◽  
...  

Cucurbita moschata D. seed oil contains approximately 75% unsaturated fatty acids, with high levels of monounsaturated fatty acids and antioxidant compounds such as vitamin E and carotenoid, constituting a promising food in nutritional terms. Associated to this, the Brazilian germplasm of C. moschata exhibits remarkable variability, representing an important source for the genetic breeding of this vegetable and other cucurbits. In this context, the present study evaluated the productivity and profile of the seed oil of 91 C. moschata accessions from different regions of Brazil and maintained in the Vegetable Germplasm Bank of the Federal University of Viçosa (BGH-UFV). A field experiment was conducted between January and July 2016. The tested C. moschata accessions showed high genetic variability in terms of characteristics related to seed oil productivity (SOP), such as the mass of seeds per fruit and productivity of seeds, providing predicted selection gains of 29.39 g and 0.26 t ha -1 , respectively. Based on the phenotypic and genotypic correlations, greater SOP can be achieved while maintaining high oleic acid content and low linoleic acid content, providing oil of better nutritional and chemical quality. In variability analysis, the accessions were clustered into five groups, which presented different averages for SOP and fatty acid content of seed oil; approach that will guide the use of appropriate germplasm in programs aimed at genetic breeding for SOP and seed oil profile. Per se analysis identified BGH-4610, BGH-5485A, BGH-6590, BGH-5556A, BGH-5472A, and BGH-5544A as the most promising accessions in terms of SOP, with average (m+g) of approximately 0.20 t ha -1 . The most promising accessions for higher oleic acid content of seed oil were BGH-5456A, BGH-3333A, BGH-5361A, BGH-5472A, BGH-5544A, BGH-5453A, and BGH-1749, with average (m+g) of approximately 30%, and almost all of these accessions were also the most promising in terms of lower linoleic acid content of seed oil, with average (m+g) of approximately 45%. Overall, part of the C. moschata accessions evaluated in the present study can serve as a promising resource in genetic breeding programs for SOP and fatty acid profile, aiming at the production of oil with better nutritional and physicochemical quality.


1987 ◽  
Vol 67 (1) ◽  
pp. 147-151 ◽  
Author(s):  
G. RAKOW ◽  
D. L. WOODS

The interplant outcrossing rate was studied for one cultivar and four lines of rape (Brassica napus) and three cultivars of mustard (Brassica juncea) under field conditions at Saskatoon, Saskatchewan, in 1982, 1983 and 1984. Marker characters used for determining outcrossing rates were seed oil erucic acid content for rape and seed color for mustard. The average interplant outcrossing rate was 21.8% for rape and 18.7% for mustard. No significant differences in outcrossing rates among the one cultivar and the four lines of rape or the three cultivars of mustard were detected. A wide range in outcrossing rates between plants within cultivars and lines was observed for both species, but whether this variation was genetic or was environmentally induced could not be determined in these experiments. Some of the implications of this partial outcrossing on methods used for the breeding of these crops are discussed.Key words: Outcrossing, rape, mustard


2000 ◽  
Vol 28 (6) ◽  
pp. 581-582 ◽  
Author(s):  
N. Kaushik ◽  
A. Agnihotri

Rapeseed-mustard is one of the most economically important oilseed crops in India. Speciality oils having high amounts of a specific fatty acid are of immense importance for both nutritional and industrial purposes. Oil high in oleic acid has demand in commercial food-service applications due to a long shelf-life and cholesterol-reducing properties. Both linoleic and linolenic acids are essential fatty acids; however, less than 3% linolenic acid is preferred for oil stability. High erucic acid content is beneficial for the polymer industry, whereas low erucic acid is recommended for food purposes. Therefore, it is important to undertake systematic characterization of the available gene pool for its variable fatty acid profile to be utilized for specific purposes. In the present study the Indian rapeseed-mustard germplasm and some newly developed low-erucic-acid strains were analysed by GLC to study the fatty acid composition in these lines. The GLC analysis revealed that the rapeseed-mustard varieties being commonly grown in India are characterized by high erucic acid content (30–51%) in the oil with low levels of oleic acid (13–23%). However, from among the recently developed low-erucic-acid strains, several lines were identified with comparatively high oleic acid (60–70%), moderate to high linoleic acid (13–40%) and low linolenic acid (< 10%) contents. Work is in progress at TERI (New Delhi, India) to utilize these lines for development of strains with particular fatty acid compositions for specific purposes.


Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Elena Cartea ◽  
Antonio De Haro-Bailón ◽  
Guillermo Padilla ◽  
Sara Obregón-Cano ◽  
Mercedes del Rio-Celestino ◽  
...  

The seed oil content and the fatty acid composition of a germplasm collection of Brassica napus and Brassica rapa currently grown in Galicia (northwestern Spain) were evaluated in order to identify potentially interesting genotypes and to assess their suitability as oilseed crops for either edible or industrial purposes. The seeds of the B. rapa landraces had higher oil content (mean 47.3%) than those of B. napus (mean 42.8%). The landraces of both species showed a similar fatty acid profile (12% oleic acid, 13% linoleic acid, 8–9% linolenic acid, 8–9% eicosenoic acid, and 50–51% erucic acid). They were very high in erucic acid content, which is nutritionally undesirable in a vegetable oil, and very low in oleic and linoleic acid contents. Therefore, they could be used for industrial purposes but not as edible oil. The erucic acid content ranged from 42% to 54% of the total fatty acid composition with an average value of 50% in the B. napus landraces whereas in B. rapa, it ranged from 43% to 57%, with an average value of 51%. Considering the seed oil and the erucic acid content together, three varieties within the B. napus collection and two varieties within the B. rapa one seem to be the most promising genotypes for industrial purposes.


1998 ◽  
Vol 117 (1) ◽  
pp. 85-87 ◽  
Author(s):  
L. VELASCO ◽  
J. M. FERNÁNDEZ-MARTINEZ ◽  
A. de HARO

Sign in / Sign up

Export Citation Format

Share Document