scholarly journals Seed Oil Quality of Brassica napus and Brassica rapa Germplasm from Northwestern Spain

Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Elena Cartea ◽  
Antonio De Haro-Bailón ◽  
Guillermo Padilla ◽  
Sara Obregón-Cano ◽  
Mercedes del Rio-Celestino ◽  
...  

The seed oil content and the fatty acid composition of a germplasm collection of Brassica napus and Brassica rapa currently grown in Galicia (northwestern Spain) were evaluated in order to identify potentially interesting genotypes and to assess their suitability as oilseed crops for either edible or industrial purposes. The seeds of the B. rapa landraces had higher oil content (mean 47.3%) than those of B. napus (mean 42.8%). The landraces of both species showed a similar fatty acid profile (12% oleic acid, 13% linoleic acid, 8–9% linolenic acid, 8–9% eicosenoic acid, and 50–51% erucic acid). They were very high in erucic acid content, which is nutritionally undesirable in a vegetable oil, and very low in oleic and linoleic acid contents. Therefore, they could be used for industrial purposes but not as edible oil. The erucic acid content ranged from 42% to 54% of the total fatty acid composition with an average value of 50% in the B. napus landraces whereas in B. rapa, it ranged from 43% to 57%, with an average value of 51%. Considering the seed oil and the erucic acid content together, three varieties within the B. napus collection and two varieties within the B. rapa one seem to be the most promising genotypes for industrial purposes.

2000 ◽  
Vol 28 (6) ◽  
pp. 581-582 ◽  
Author(s):  
N. Kaushik ◽  
A. Agnihotri

Rapeseed-mustard is one of the most economically important oilseed crops in India. Speciality oils having high amounts of a specific fatty acid are of immense importance for both nutritional and industrial purposes. Oil high in oleic acid has demand in commercial food-service applications due to a long shelf-life and cholesterol-reducing properties. Both linoleic and linolenic acids are essential fatty acids; however, less than 3% linolenic acid is preferred for oil stability. High erucic acid content is beneficial for the polymer industry, whereas low erucic acid is recommended for food purposes. Therefore, it is important to undertake systematic characterization of the available gene pool for its variable fatty acid profile to be utilized for specific purposes. In the present study the Indian rapeseed-mustard germplasm and some newly developed low-erucic-acid strains were analysed by GLC to study the fatty acid composition in these lines. The GLC analysis revealed that the rapeseed-mustard varieties being commonly grown in India are characterized by high erucic acid content (30–51%) in the oil with low levels of oleic acid (13–23%). However, from among the recently developed low-erucic-acid strains, several lines were identified with comparatively high oleic acid (60–70%), moderate to high linoleic acid (13–40%) and low linolenic acid (< 10%) contents. Work is in progress at TERI (New Delhi, India) to utilize these lines for development of strains with particular fatty acid compositions for specific purposes.


2016 ◽  
Vol 15 (4) ◽  
pp. 348-354
Author(s):  
Victoria G. Benelli ◽  
Fred L. Allen ◽  
Ming Li Wang

AbstractNiger (Guizotia abyssinica, L.) is a desirable oilseed crop for birdseed, especially for finches (Spinus spp.) because of its high ratio of unsaturated to saturated fatty acids and relatively high oil content. In 2012, phenotypic traits, seed oil and fatty acid content measurements were made on 14 plant introductions (PIs) from the United States Department of Agriculture germplasm collection. The PIs originated in Ethiopia (ten), India (three) and USA (one). The phenotypic traits analysed included seed/plant, branches/plant, capitula/plant1, average seed/capitulum and plant height. After initial assessments of the 14 PIs, three were selected for use as parents to produce two one-way and two two-way F1 crosses for the purpose of evaluating self-incompatibility (SI). Parent and F1 progeny seeds were planted in a greenhouse and transplanted to a field site at the East Tennessee Research and Education Center (2012, 2013 and 2014). Comparisons from 2012 showed seed oil of the 14 PIs ranging from 32.9 to 37.9% (PI 508076 (Ethiopia) and PI 509436 (India), respectively). Major fatty acids included stearic, palmitic, oleic and linoleic; with linoleic acid in highest amount. PI508079 (Ethiopia) had the best combination of seed yield, seed oil and linoleic acid content. Over 2013 and 2014, SI ranged from 91.1 to 100.0%. W6 18860 (USA) had the most self-compatibility, and the F1 plants generated from crosses between W6 18860 and other plants tended to be self-compatible when the former was used as a pollen recipient. The results obtained from this study should be useful for niger breeding and production purposes.


2021 ◽  
Author(s):  
Paul I. Otyama ◽  
Kelly Chamberlin ◽  
Peggy Ozias-Akins ◽  
Michelle A. Graham ◽  
Ethalinda K.S. Cannon ◽  
...  

The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect - increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanut, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7,682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (p-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.


Author(s):  
Paul I Otyama ◽  
Kelly Chamberlin ◽  
Peggy Ozias-Akins ◽  
Michelle A Graham ◽  
Ethalinda K S Cannon ◽  
...  

Abstract The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect—increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanut, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7,682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (p-value &lt; 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.


2005 ◽  
Vol 143 (1) ◽  
pp. 75-84 ◽  
Author(s):  
M. DEL RÍO-CELESTINO ◽  
R. FONT ◽  
J. M. FERNÁNDEZ-MARTÍNEZ ◽  
A. DE HARO-BAILÓN

Chemical-mutagen treatment of Ethiopian mustard (Brassica carinata A. Braun) line C-101 seeds (which contained about 441 g/kg C22[ratio ]1) led to isolation of a mutant, L-935, which contained about 190 g/kg erucic acid (intermediate C22[ratio ]1) in the seed oil. The objective was to determine the inheritance of the intermediate C22[ratio ]1 level in this mutant. The mutant L-935 was reciprocally crossed to C-101 and to the mutant line L-2890 (which contained 112 g/kg C22[ratio ]1; low). The F1, F2 and BC1F1 generations were obtained. Cytoplasmic effects were not observed in any of the crosses. The analysis of the fatty acid composition in the F2 populations from the crosses of L-935 with C-101 revealed a segregation pattern fitting a ratio 1[ratio ]2[ratio ]1 for intermediate, high and very high C22[ratio ]1 content. The segregation patterns fitted a one-locus (designated M2) model with two alleles (M2 and mi) and with partial dominance of high over intermediate C22[ratio ]1 content. The segregating generations of the crosses L-935×L-2890 showed a strong transgressive segregation with C22[ratio ]1 values ranged from 1·3–406·5 g/kg. The analyses of the F2, BC1F1 and F3 generations indicated that the combination of alleles at two loci, M1 and M2 controlled the transgressive segregation for C22[ratio ]1 content. The proposed genotypes (C22[ratio ]1 content) for each parent were as follows: L-935 (190 g/kg 22[ratio ]1)=MMmimiEEEE; L-2890 (112 g/kg C22[ratio ]1)=mmmmEEEE; and C-101 (441 g/kg C22[ratio ]1)=MMMMEEEE.


Author(s):  
S. К. Temirbekova ◽  
Yu. V. Afanaseva ◽  
I. M. Kulikov ◽  
G. V. Metlina ◽  
S. A. Vasilchenko

The results of long-term studies of the biological, morphological and phenological features of the introduced new culture of safflower in the Central, Volga and North Caucasus regions are presented. Optimum parameters of depth of seeding (5-6 cm), seeding rates (300-350 thousand pieces/hectare or 12-14 kg), ensuring high productivity, oil content and quality of seeds are established. For the first time, the relationship between moisture availability of vegetation periods with accumulation of oil content and a change in the fatty acid composition was established. Oilseed (in untreated seeds) in the regions was from 14,5 to 31,2%, in excessively wet 2013 – 6,4% in the Moscow region and 8,6% in the Saratov region. Fatty acid composition revealed a high content of oleic acid in Krasa Stupinskaya variety – 13,6-16,8%, linoleic acid – 68,5-75,7%. The yield of oil in the Moscow region was 240 kg/ha. The yield of Krasa Stupinskaya in the Moscow Region was 0,6 t/ha, the Rostov Region 0,8 t/ha and Saratov Region 1,2 t/ha, with an average weight of 1000 seeds, respectively, by regions: 40,0 g, 47,3 g and 40,9 g. The growing season for growing seeds was 105 days in the Moscow Region, 94 days in the Rostov Region and 95 days in the Saratov Region. It has been established that excessive moistening during the flowering and seed filling period increases the harmfulness of enzyme-mycosis seed depletion (EMIS) – biological injury during maturation (enzymatic stage), followed by the seeding of the seeds with the phytopathogen Alternaria carthami Chowdhury. In the breeding programs for productivity and oil content, it is recommended to use the varieties Moldir (Kazakhstan) and Krasa Stupinskaya (FGBNU VSTISP), the fatty acid composition of which is characterized by an increased content of oleic and linoleic acid, which is of particular value for storage and use for food purposes.


2020 ◽  
Vol 104 (5) ◽  
pp. 1410-1422
Author(s):  
Shan Tang ◽  
Dong‐Xu Liu ◽  
Shaoping Lu ◽  
Liangqian Yu ◽  
Yuqing Li ◽  
...  

1970 ◽  
Vol 50 (3) ◽  
pp. 233-247 ◽  
Author(s):  
D. B. FOWLER ◽  
R. K. DOWNEY

Self-pollinated seed from normal and erucic acid free plants of summer rapeseed (Brassica napus L.) was harvested at weekly intervals from pollination to maturity. Oven-dried whole seeds and their component parts were weighed and analyzed for oil content and fatty acid composition. Oil and dry matter accumulation followed sigmoidal patterns, most of the deposition occurring between 14 and 35 days after pollination (DAP). The relative contribution of the testa, endosperm and embryo to dry weight and oil content of whole seeds changed significantly during seed development. Oil content of the developing embryo varied from 22 to 44%, and the testa from 1.6 to 13%, although at maturity only 6 to 8% oil was found in the testa and adhering aleurone. The nucleate endosperm oil content was estimated to be low and in the order of 2 to 2.5%. In 7- to 14-day-old seeds the dry weight, oil content and fatty acid composition were largely determined by the testa and endosperm. From 14 to 21 DAP the testa and embryo were dominant and after 21 DAP the embryo was the controlling influence on the seed characteristics studied.Oils of the testa, nucleate endosperm and embryo differed in fatty acid composition. In seeds free of erucic acid, the ratios of the 18 carbon fatty acids of the embryo and testa remained nearly constant from 21 DAP to maturity. This suggested that the variation in fatty acid composition as well as oil content during seed development in this material was due to disproportionate changes in the contribution of the testa, nucleate endosperm and embryo. However, in developing seeds capable of producing erucic acid a change in the ratio of fatty acid synthesis occurred in both the testa and embryo.


Sign in / Sign up

Export Citation Format

Share Document