Irish farms under climate change – is there a regional variation on farm responses?

2014 ◽  
Vol 153 (3) ◽  
pp. 385-398 ◽  
Author(s):  
S. SHRESTHA ◽  
M. ABDALLA ◽  
T. HENNESSY ◽  
D. FORRISTAL ◽  
M. B. JONES

SUMMARYThe current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0·30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.

2017 ◽  
Author(s):  
Sangchul Lee ◽  
In-Young Yeo ◽  
Ali M. Sadeghi ◽  
Gregory W. McCarty ◽  
Wells D. Hively ◽  
...  

Abstract. Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to exacerbate under climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluates the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitive scenarios to assess the individual effects of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %) and temperature increase (2.9 and 5.0 °C), and considered the predicted climate change scenario using five general circulation models (GCMs) under the Special Report on Emissions Scenarios (SRES) A2 scenario. Using SWAT model simulations from 2001 to 2014, as a baseline scenario, the predicted water and nitrate budgets under climate variability and change scenarios were analyzed at multiple temporal scales. Compared to the baseline scenario, precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased stream flow and nitrate loads by 50 % and 52 %, respectively, while, temperature increase of 5.0 °C reduced stream flow and nitrate loads by 12 % and 13 %, respectively. Under the climate change scenario, annual stream flow and nitrate loads showed an average increase of nearly 40 %, relative to the baseline scenario. Differences in hydrological responses observed from the two watersheds were primarily attributed to contrasting land use and soil characteristics. The watershed with larger percent croplands indicated increased nitrate yield of 0.52 kg N ha−1 compared to the one with less percent croplands under the climate change scenario, due to increased export of nitrate derived from fertilizer. The watershed dominated by poorly-drained soils showed a lower increase in nitrate yield than one dominated by well-drained soils, due to a high potential of nitrate loss in surface runoff and enhanced denitrification. To mitigate increased nitrate loads potentially caused by climate change, the enhanced implementation of conservation practices would be necessary for this region in the future. These findings assist watershed managers and regulators as they seek to establish effective adaptation strategies to mitigate water quality degradation in this region.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Sign in / Sign up

Export Citation Format

Share Document