Long-term effect of residue return and fertilization on microbial biomass and community composition of a clay loam soil

2015 ◽  
Vol 154 (6) ◽  
pp. 1051-1061 ◽  
Author(s):  
B. ZHANG ◽  
Q. GAO ◽  
S. XU ◽  
L. MA ◽  
C. TIAN

SUMMARYA field study was carried out to examine the response of microbial communities of a clay loam soil to long-term (30 years) effects of residue return and fertilization. The experimental design was a split-plot arrangement of treatments, consisting of three residue treatments (crop residues returned at rates of 0, 2500 and 5000 kg/ha) in combination with eight fertilization treatments (control, no fertilizer; N, mineral nitrogen (N) fertilizer; P, mineral phosphorus (P) fertilizer; K, mineral potassium (K) fertilizer; NP, mineral NP fertilizer; NK, mineral NK fertilizer; PK, mineral PK fertilizer; and NPK, mineral NPK fertilizer). Soil microbial communities were characterized by phospholipid fatty acid analysis. Results indicated that the more crop residues were returned, the lower ratio of fungi to bacteria was observed. However, soil microbial biomass was only found to be significantly higher in plots with residues returned at a rate of 5000 kg/ha but not 2500 kg/ha. This suggested there was a threshold for microbial biomass to increase under residue return for the clay loam soil studied. The fertilization effect on soil microbial biomass gradually decreased with increases in the amount of crop residues returned. A significant composition change was observed under N fertilization. Structural equation modelling indicated that soil microbial communities were influenced directly by residue return and indirectly by residue-induced change in ratio of carbon to N and fertilization-induced change in soil pH.

2006 ◽  
Vol 43 (6) ◽  
pp. 751-758 ◽  
Author(s):  
Giancarlo Renella ◽  
Amar M. Chaudri ◽  
Céline M. Falloon ◽  
Loretta Landi ◽  
Paolo Nannipieri ◽  
...  

2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen Yang ◽  
Nasreen Jeelani ◽  
Andong Cai ◽  
Xiaoli Cheng ◽  
Shuqing An

AbstractCoastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.e., gram-positive bacterial, actinomycete, saturated straight-chain, and branched PLFA) following the conversion of P. australis wetland to aquaculture pond, wheat, and oilseed rape fields. In contrast, it greatly decreased total soil microbial biomass and various species following the conversion of P. australis wetland to town construction land. Coastal reclamation reduced fungal:bacterial PLFA, monounsaturated:branched PLFA ratios, whereas increasing gram-positive:gram-negative PLFA ratio following the conversion of P. australis wetland to other land use types. Our study suggested that coastal reclamation shifted soil microbial communities by altering microbial biomass and community composition. These changes were driven primarily by variations in soil nutrient substrates and physiochemical properties. Changes in soil microbial communities following coastal reclamation impacted the decomposition and accumulation of soil carbon and nitrogen, with potential modification of carbon and nitrogen sinks in the ecosystems, with potential feedbacks in response to climate change.


1999 ◽  
Vol 79 (2) ◽  
pp. 255-263 ◽  
Author(s):  
M. R. Banerjee ◽  
D. L. Burton ◽  
C. A. Grant

Fertilizers are frequently used in agriculture to enhance crop yield and quality. Increasingly, microbial and enzyme inhibitors are being used to enhance the efficiency of fertilizer nitrogen use. The assumption being made is that the impact of these compounds is short-term or localized and thus does not adversely impact soil quality. This study investigates the implications of urea fertilizer with and without urease inhibitor [N-(n-butyl) thiophosphoric triamide, NBPT], conventional and zero tillage systems, and soil types on the soil biological characteristics including N mineralization. Microplot studies were conducted in clay loam and fine sandy loam soils in Manitoba. Soil type had a significant effect on the soil organic C but tillage did not have any significant effect. Soil microbial biomass C content ranged widely (131–1215 µg g−1 soil). The clay loam soil generally tended to contain higher biomass C than the sandy loam soil. The potential soil mineral N production (N0) was higher in clay loam soil (92.6 µg g−1 soil) than sandy loam soil (40.2 µg g−1 soil). Tillage systems, urea and urease inhibitor application had no significant impact on the soil biomass C, N0, arylsulfatase or acid and alkaline phosphatase content. At these sites considerable fluctuations occurred in the microbial and biochemical properties due to the variation of soil type. In general, these fluctuations were mainly related to soil organic matter and soil moisture content. Tillage system, urea with and without NBPT application did not contribute any notable impact on the soil biological properties reported in this study. Key words: Soil biological quality, soil type, urease inhibitor, conventional tillage, zero tillage


Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

The objective was to quantify the effect of crop rotations, crop type, life cycle, nitrogen fertilizer, manure application, and fallow on soil hydrophobicity (SH). The SH was measured for a long-term (16 yr) dryland field experiment on a Dark Brown clay loam soil in southern Alberta, Canada. Mean SH was significantly (P ≤ 0.05) greater in rotations with grass, perennial crops, manure application, and continuous cropping; whereas cereal-legume rotations and N fertilizer effects were undetectable. A strong, positive correlation occurred between SH and soil organic carbon concentration (r=0.73). Soil water repellency should be measured on these plots using water-based methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252216
Author(s):  
Laurie Dunn ◽  
Christophe Lang ◽  
Nicolas Marilleau ◽  
Sébastien Terrat ◽  
Luc Biju-Duval ◽  
...  

According to biogeography studies, the abundance and richness of soil microorganisms vary across multiple spatial scales according to soil properties and farming practices. However, soil microorganisms also exhibit poorly understood temporal variations. This study aimed at better understanding how soil microbial communities respond to changes in farming practices at a landscape scale over time. A regular grid of 269 sites was set up across a 1,200 ha farming landscape, and soil samples were characterized for their molecular microbial biomass and bacterial richness at two dates (2011 and 2016). A mapping approach highlighted that spatial microbial patterns were stable over time, while abundance and richness levels were modified. The drivers of these changes were investigated though a PLS-PM (partial least square path-modeling) approach. Soil properties were stable over time, but farming practices changed. Molecular microbial biomass was mainly driven by soil resources, whereas bacterial richness depended on both farming practices and ecological parameters. Previous-crop and management effects and a temporal dependence of the microbial community on the historical farming management were also highlighted.


Sign in / Sign up

Export Citation Format

Share Document