Nitrogen use efficiency in spring wheat: genotypic variation and grain yield response under sandy soil conditions

2017 ◽  
Vol 155 (9) ◽  
pp. 1407-1423 ◽  
Author(s):  
E. MANSOUR ◽  
A. M. A. MERWAD ◽  
M. A. T. YASIN ◽  
M. I. E. ABDUL-HAMID ◽  
E. E. A. EL-SOBKY ◽  
...  

SUMMARYAgricultural practices are likely to lower nitrogen (N) fertilization inputs for economic and ecological limitation reasons. The objective of the current study was to assess genotypic variation in nitrogen use efficiency (NUE) and related parameters of spring wheat (Triticum aestivumL.) as well as the relative grain yield performance under sandy soil conditions. A sub-set of 16 spring wheat genotypes was studied over 2 years at five N levels (0, 70, 140, 210 and 280 kg N/ha). Results indicated significant differences among genotypes and N levels for grain yield and yield components as well as NUE. Genotypes with high NUE exhibited higher plant biomass, grain and straw N concentration and grain yield than those with medium and low NUE. Utilization efficiency (grain-NUtE) was more important than uptake efficiency (total NUpE) in association with grain yield. Nitrogen supply was found to have a substantial effect on genotype; Line 6052 as well as Shandawel 1, Gemmiza 10, Gemmiza 12, Line 6078 and Line 6083 showed higher net assimilation rate, more productive tillers, increased number of spikes per unit area and grains per spike, extensive N concentration in grain and straw, heavier grains, higher biological yield and consequently maximized grain yield. The relative importance of NUE-associated parameters such as nitrogen agronomic efficiency, nitrogen physiological efficiency and apparent nitrogen recovery as potential targets in breeding programmes for increased NUE genotypes is also mentioned.

2012 ◽  
Vol 92 (5) ◽  
pp. 847-856 ◽  
Author(s):  
José Luis Velasco ◽  
Hernán Sainz Rozas ◽  
Hernán Eduardo Echeverría ◽  
Pablo Andrés Barbieri

Velasco, J. L., Rozas, H. S., Echeverría, H. E. and Barbieri, P. A. 2012. Optimizing fertilizer nitrogen use efficiency by intensively managed spring wheat in humid regions: Effect of split application. Can. J. Plant Sci. 92: 847–856. Efficient N fertilizer management is critical for the economical production of wheat and the long-term protection of the environment. Six experiments were conducted at three locations in the south-east of the province of Buenos Aires (SE), Argentina, during a 4-yr period, on Typic Argiudoll and Petrocalcic Paleudoll. The study was designed to evaluate the effects of splitting nitrogen (N) fertilizer on N use efficiency (NUE) in wheat (Triticum aestivum L.). Rates of 0 to 150 kg N ha−1were used, applied at tillering (Z24) or split between Z24 and flag leaf (Z39). The experimental design was a randomized complete block with three replications. Grain yield ranged from 3522 to 8185 kg ha−1, according to N availability and application time. In the experiments without water stress (three out of six), average grain yield (across experiments) was 6669 and 6989 kg ha−1for full and split fertilization, respectively. In four out of six experiments, average N in above-ground biomass (NAB), N recovery fraction (NRF), and grain protein content (GPC) for split N application were greater than for full N at Z24 (NAB, 176 and 157 kg N ha−1; NRF, 66 and 51%; GPC, 100 and 92 g kg−1, for split and full N application, respectively). In years without water stress, splitting N between Z24 and Z39 is an appropriate strategy to improve NRF, reducing N losses, and minimizing the environmental impact of fertilization.


Author(s):  
Nihal Kayan ◽  
Nazife Gözde Ayter Arpacıoglu ◽  
Imren Kutlu ◽  
Mehmet Sait Adak

This research was conducted between 2011 and 2015 at research field of Faculty of Agriculture, Eskişehir Osmangazi University for evaluating two tillage methods (conventional and reduced), three crop rotations (wheat-wheat; wheat-fallow; wheat-chickpea) and four N levels (0, 50, 100, 150 kg ha-1). The experimental design was split-split plot with three replicates. Tillage methods were in main plots, crop rotations in subplots and N levels in sub-sub plots. The N concentration of grain and straw harvested from aboveground plant organs was separately determined using by the Kjeldahl digestion method after the plant samples were ground. Then, grain protein content, nitrogen use efficiency (NUE), nitrogen uptake efficiency (NUPE), nitrogen utilization efficiency (NUTE) were calculated. According to results, effects of tillage methods on NUE were unclear. Conventional tillage methods resulted in higher NUPE than reduced tillage in the last three years of the experiment. The NUTE was higher in reduced tillage than conventional in 2011-2012 and 2014-2015. The effects of tillage methods on grain yield were different due to the climatic conditions. Wheat-chickpea rotation had the better results for examined traits in this research. Increasing nitrogen doses increased grain and plant protein rate, however it decreased NUE and NUPE. The effects of nitrogen doses on NUTE were ambiguous. Nitrogen use efficiency and NUPE is traits that can be differed according to changeable grain yield depend on environmental conditions. Therefore, the experiments should be conducted for more than four years for revealed absolute effects both soil tillage method and nitrogen fertilization.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 572
Author(s):  
André B. Andrade ◽  
Douglas R. Guelfi ◽  
Valdemar Faquin ◽  
Fabrício S. Coelho ◽  
Carolina S. de C. Souza ◽  
...  

Knowing the nitrogen use efficiency (NUE) of crops is crucial to minimize environmental pollution, although NUE is rarely provided for numerous genotypes in the tobacco (Nicotiana tabacum L.) crop. Through the growth of contrasting genotypes in nutritive solutions, we aimed to characterize five NUE components of 28 genotypes and to classify them according to their efficiency and responsiveness to nitrogen (N) availability. On average, physiological N use efficiency, N harvest index, and N uptake efficiency decreased by 16%, 4%, and 57%, respectively, under N-deficient conditions, while N utilization efficiency decreased by 43% at adequate N supply. The relative efficiency of N use varied from 35% to 59% among genotypes. All genotypes of the Virginia and Maryland varietal groups were efficient, and those of the Burley, Comum, and Dark groups were inefficient, while the responsiveness varied among genotypes within varietal groups, except for Maryland genotypes. Our findings are helpful in indicating genotypes with distinguished efficiency and responsiveness to N supply, which can be further chosen according to soil N level or affordability to N fertilizers worldwide in tobacco crops. In a general framework, this can lead to a more sustainable use of N and can support tobacco breeding programs for NUE.


2015 ◽  
Vol 41 (3) ◽  
pp. 422 ◽  
Author(s):  
Cheng-Xin JU ◽  
Jin TAO ◽  
Xi-Yang QIAN ◽  
Jun-Fei GU ◽  
Bu-Hong ZHAO ◽  
...  

2011 ◽  
Vol 37 (1) ◽  
pp. 152-157 ◽  
Author(s):  
You-Liang YE ◽  
Yu-Fang HUANG ◽  
Chun-Sheng LIU ◽  
Ri-Tao QU ◽  
Hai-Yan SONG ◽  
...  

Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05718
Author(s):  
Md. Akhter Hossain Chowdhury ◽  
Taslima Sultana ◽  
Md. Arifur Rahman ◽  
Tanzin Chowdhury ◽  
Christian Ebere Enyoh ◽  
...  

2004 ◽  
Vol 84 (2) ◽  
pp. 169-176 ◽  
Author(s):  
B. L. Ma ◽  
M. Li ◽  
L. M. Dwyer ◽  
G. Stewart

Little information is available comparing agronomic performance and nitrogen use efficiency (NUE) for N application methods such as foliar spray, soil application, and ear injection in maize (Zea mays L.). The objective of this study was to investigate the effects of various N application methods on total stover dry matter, grain yield, and NUE of maize hybrids using a 15N-labeling approach. A field experiment was conducted on a Dalhousie clay loam in Ottawa and a Guelph loam in Guelph for 2 yr (1999 and 2000). Three N application methods were tested on two maize hybrids, Pioneer 3893 and Pioneer 38P06 Bt. At planting, 60 kg N ha-1 as ammonium nitrate was applied to all treatments. In addition, 6.5 kg N ha-1 and 13.5 kg N ha-1 as 15N-labeled urea were applied to either foliage (Treatment I) or soil (Treatment II) at V6 and V12 stages, respectively. In Treatment III, 20 kg N ha-1 as 15N-labeled urea was injected into space between ear and husks at silking. The results showed that compared with soil N application neither foliar spray nor injection through ear affected grain yield or stover dry matter. The NUE values ranged from 12 to 76% for N fertilizer applied at V6 a nd V12 stages, or at silking for all treatments. There was no interaction of hybrid × N application methods on any variables measured with the only exception that for soil N application, grain NUE in Pioneer 38P06 Bt was significant higher than in Pioneer 3893. The difference in total N and NUE of grain and stover between soil N application and foliar N spray was inconsistent. However, NUE was substantially higher for N injection through the ear than for foliar or soil application without differential responses between the two hybrids. Nitrogen injection through the ear at silking might have altered N redistribution within the plant and improved NUE. Hence, it can potentially enhance grain protein content. Foliar N spray is not advocated for maize production in Ontario. Key words: Maize, Zea mays, nitrogen application methods, nitrogen-15, yield, nitrogen use efficiency


Sign in / Sign up

Export Citation Format

Share Document