The effect of long term under- and over-feeding on the expression of genes related to glucose metabolism in mammary tissue of sheep

2015 ◽  
Vol 82 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Eleni Tsiplakou ◽  
Emmanouil Flemetakis ◽  
Evangelia-Diamanto Kouri ◽  
Kyriaki Sotirakoglou ◽  
George Zervas

Glucose utilisation for lactose synthesis in the mammary gland involves expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, the effect of long term under- and over-feeding on the expression of genes [glucose transporter 1: GLUT1, glucose transporter 3: GLUT3, Sodium glucose contransporter 1: SGLT1, two isoforms of β- (1,4) galactosyltransferase: β- (1,4) GAT1, β- (1,4) GAT3 and α-lactalbumin: LALBA] related to glucose metabolism in sheep mammary tissue (MT) was examined. Twenty-four lactating dairy sheep were divided into three homogenous sub-groups and fed the same ration in quantities which met 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction on mRNA of GLUT1 and LALBA gene in the MT of underfed sheep, compared with the respective controls and overfed and a significant reduction on mRNA level of SGLT1 and β- (1,4) GAT1 in the MT of underfed sheep, compared with the overfed ones. A significant increase in the GLUT3 mRNA accumulation in the MT of both under- and over- fed sheep was found. Additionally, a trend of reduction on β- (1,4) GAT3 mRNA level in the MT of the underfed sheep, compared with the overfed, was observed. A close positive relationship was obtained between the mRNA transcripts accumulation of GLUT1, SGLT1, β- (1,4) GAT1 and LALBA gene with the milk lactose content and milk lactose yield respectively. In conclusion, feeding level and consequently nutrient availability, may affect glucose uptake and utilisation in sheep MT by altering the GLUT1, GLUT3, SGLT1, β- (1,4) GAT1 and LALBA gene expression involved in their metabolic pathways.

2017 ◽  
Vol 57 (4) ◽  
pp. 622
Author(s):  
E. Tsiplakou ◽  
E. Flemetakis ◽  
E. D. Kouri ◽  
G. Zervas

The glucose metabolism in the mammary tissue (MT) is controlled by several genes whose nutritional regulation is poorly documented. In this study, the effect of long-term under- and overfeeding on the expression of glucose transporter 1 (GLUT1), glucose transporter 3 (GLUT3), sodium glucose contransporter 1 (SGLT1), two isoforms of β- (1, 4) galactosyltransferase [β- (1, 4) GAT1 and β- (1, 4) GAT3], and α-lactalbumin (LALBA), related to glucose metabolism in goat MT, was examined by using real-time RT-PCR. Twenty- four lactating goats were divided into three homogenous subgroups and fed the same ration in quantities covering 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements, respectively. The results showed that the feeding level did not affect the GLUT1, GLUT3 and SGLT1 genes expression in goats MT. On the contrary, a significant reduction and a trend for reduction on mRNA of β- (1, 4) GAT1 and on β- (1, 4) GAT3, respectively, in the MT of underfed goats, compared with the overfed ones, was observed. Moreover, a significant decrease in the LALBA mRNA accumulation in the MT of underfed goats compared with the overfed was found. In conclusion, the MT of goats, unlike cows, adapt to changes in glucose or energy supply from different levels of feeding by changing the utilisation of glucose for the synthesis of lactose.


2014 ◽  
Vol 82 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Eleni Tsiplakou ◽  
Emmanouil Flemetakis ◽  
Evangelia-Diamanto Kouri ◽  
Kyriaki Sotirakoglou ◽  
George Zervas

Milk fatty acid (FA) synthesis by the mammary gland involves expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of long-term under- and over-feeding on the expression of genes (acetyl Co A carboxylase, ACC; fatty acid synthetase, FAS; lipoprotein lipase, LPL; stearoyl Co A desaturase, SCD; peroxisome proliferator activated receptor γ2, PPARγ2; sterol regulatory element binding protein-1, SREBP-1c; and hormone sensitive lipase, HSL) related to FA metabolism in sheep mammary tissue (MT). Twenty-four lactating sheep were divided into three homogenous sub-groups and fed the same ration in quantities covering 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction of mRNA of ACC, FAS, LPL and SCD in the MT of underfed sheep, and a significant increase on the mRNA of LPL and SREBP-1c in the MT of overfed compared with the control respectively. In conclusion, the negative, compared to positive, energy balance in sheep down-regulates ACC, FAS, LPL, SCD, SREBP-1c and PPARγ2 expression in their MT which indicates that the decrease in nutrient availability may lead to lower rates of lipid synthesis.


1996 ◽  
Vol 270 (2) ◽  
pp. F245-F253 ◽  
Author(s):  
J. H. Dominguez ◽  
C. C. Hale ◽  
M. Qulali

Gentamicin nephrotoxicity may arise in part from alterations in the expression of genes critical for renal proximal tubule metabolism. We tested the hypothesis that gentamicin suppressed the gene expression of the Na+/Ca2+ exchanger (NaCaX), glucose transporter 1 (GLUT1) and alpha 1-subunit of Na(+)-K(+)-ATPase (alpha 1-NKA) in renal tubules. The products of these genes mediate Na(+)-dependent Ca2+ efflux, glucose efflux and influx, and ATP-dependent Na+ efflux across tubular basolateral membranes, respectively. After 10 days of gentamicin intoxication (40 mg/kg ip, twice daily), levels of mRNAs encoding NaCaX and the cognate protein declined. GLUT1 mRNA levels increased, although GLUT1 protein levels were also reduced. Moreover, whereas alpha 1-NKA mRNA levels remained unchanged, alpha 1-NKA protein levels were also reduced. We suggest that the higher GLUT1 mRNA level is part of the stress response to tubular injury. However, regardless of the mRNA level, the most consistent effect of gentamicin was reduction of specific protein levels. We propose that failure to translate high levels of mRNA into proportionally high levels of protein, as in the case of GLUT1, may attenuate the expression of stress response gene products, and thus diminish the possibility of recovery in gentamicin intoxication.


2012 ◽  
Vol 24 (2) ◽  
pp. 344 ◽  
Author(s):  
M. Garcia-Herreros ◽  
I. M. Aparicio ◽  
D. Rath ◽  
T. Fair ◽  
P. Lonergan

Previous studies have shown that developmental kinetic rates following IVF are lower in female than in male blastocysts and that this may be related to differences in glucose metabolism. In addition, an inhibition of phosphatidylinositol 3-kinase (PI3-K) inhibits glucose uptake in murine blastocysts. Therefore, the aim of this study was to identify and compare the expression of proteins involved in glucose metabolism (hexokinase-I, HK-I; phosphofructokinase-1, PFK-1; pyruvate kinase1/2, PK1/2; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; glucose transporter-1, GLUT-1; and glycogen synthase kinase-3, GSK-3) in male and female bovine blastocysts to determine whether PI3-K has a role in the regulation of the expression of these proteins. Hexokinase-I, PFK-1, PK1/2, GAPDH and GLUT-1 were present in bovine embryos. Protein expression of these proteins and GSK-3 was significantly higher in male compared with female blastocysts. Inhibition of PI3-K with LY294002 significantly decreased the expression of HK-I, PFK-1, GAPDH, GSK-3 A/B and GLUT-1. Results showed that the expression of glycolytic proteins HK-I, PFK-1, GAPDH and PK1/2, and the transporters GLUT-1 and GSK-3 is regulated by PI3-K in bovine blastocysts. Moreover, the differential protein expression observed between male and female blastocysts might explain the faster developmental kinetics seen in males, as the expression of main proteins involved in glycolysis and glycogenogenesis was significantly higher in male than female bovine embryos and also could explain the sensitivity of male embryos to a high concentration of glucose, as a positive correlation between GLUT-1 expression and glucose uptake in embryos has been demonstrated.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Masataka YOKOYAMA ◽  
Yoshio KOBAYASHI ◽  
Tohru MINAMINO

Cellular senescence is a state of irreversible growth arrest induced by various stresses such as oncogenic stimuli. This response is controlled by negative regulators of the cell cycle like the p53 tumor suppressor protein. Accumulating evidence has suggested a role of p53 activation in various age-associated conditions including atherosclerosis, heart failure and diabetes. Here we show that endothelial p53 activation plays a pathological role in the regulation of endothelial function and glucose metabolism under diabetic conditions. Endothelial expression of p53 was markedly up-regulated in a streptozotocin-induced diabetes model. Endothelial function such as acetylcholine-dependent vasodilatation was markedly impaired in this model. Although hyperglycemia was not altered, impairment of endothelial function was significantly improved in mice with endothelial cell-specific p53 deficiency. In same way, p53 was markedly activated in ischemic vessels, and endothelial p53 deficiency enhanced ischemia-induced angiogenesis. Mechanistically, endothelial p53 up-regulated the expression of PTEN that negatively regulated the Akt-eNOS pathway, and therefore disruption of p53 improved endothelial dysfunction. We also found that endothelial p53 was markedly activated, and the Akt-eNOS pathway was attenuated in a diet-induced obesity model. Disruption of endothelial p53 activation improved dietary inactivation of eNOS that up-regulated the expression of PGC-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Inhibition of endothelial p53 also improved dietary impairment of glucose transport into skeletal muscle by up-regulating endothelial expression of glucose transporter 1. Consequently, mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation compared with control littermates. These results indicate that endothelial p53 negatively regulates endothelium-dependent vasodilatation, ischemia-induced angiogenesis, and mitochondrial biogenesis by inhibiting the Akt-eNOS pathway and suggest that inhibition of endothelial p53 could be a novel therapeutic target in diabetic patients.


2018 ◽  
Vol 13 (1) ◽  
pp. 569-581
Author(s):  
Nicole Nowak ◽  
Anna Kulma ◽  
Jan Gutowicz

AbstractIn rapid proliferating cancer cells, there is a need for fast ATP and lactate production, therefore cancer cells turn off oxidative phosphorylation and turn on the so called "Warburg effect". This regulating the expression of genes involved in glycolysis. According to many studies, glucose transporter 1, which supplies glucose to the cell, is the most abundantly expressed transporter in cancer cells. Hexokinase 2, is one of four hexokinase isoenzymes, is also another highly expressed enzyme in cancer cells and it functions to enhance the glycolytic rate. The up-regulation of these two proteins has been established as an important factor in promoting development and metastasis in many types of cancer. Furthermore, other enzymes involved in glycolysis pathway such as phosphoglucose isomerase and glyceraldehyde 3-phosphate dehydrogenase, exhibit additional functions in promoting tumor growth in a non-glycolytic way. This review demonstrates the pivotal role of GLUT1, HK2, PGI and GAPDH in cancer development. In particular, we look at how the multifunctional proteins, PGI and GAPDH, affect cancer cell survival. We also present various clinical cancer cases in terms of the overexpression of selected proteins, which may be considered as a therapeutic target.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Kuan Li ◽  
Minmin Li ◽  
Wenli Li ◽  
Hongzhi Yu ◽  
Xin Sun ◽  
...  

AbstractEfficient repair of injured epithelium by airway progenitor cells could prevent acute inflammation from progressing into chronic phase in lung. Here, we used small molecules, genetic loss-of-function, organoid cultures, and in vivo lung-injury models to show that autophagy is essential for maintaining the pool of airway stem-like vClub cells by promoting their proliferation during ovalbumin-induced acute inflammation. Mechanistically, impaired autophagy disrupted glucose uptake in vClub progenitor cells, and either reduced accessibility to glucose or partial inhibition of glycolysis promoted the proliferative capacity of vClub progenitor cells and their daughter Club cells. However, glucose deprivation or glycolysis blockade abrogated the proliferative capacity of airway vClub cells and Club cells but promoted ciliated and goblet cell differentiation. Deficiency of glucose transporter-1 suppressed the proliferative capacity of airway progenitor cells after ovalbumin challenge. These findings suggested that autophagy and glucose metabolism are essential for the maintenance of airway epithelium at steady state and during allergic inflammation.


Sign in / Sign up

Export Citation Format

Share Document