Numerical modelling for three-dimensional heat and fluid flow through a bank of cylinders in yaw

2004 ◽  
Vol 498 ◽  
pp. 139-159 ◽  
Author(s):  
A. NAKAYAMA ◽  
F. KUWAHARA ◽  
T. HAYASHI
2013 ◽  
Vol 795 ◽  
pp. 603-610 ◽  
Author(s):  
Mohamed Mazlan ◽  
A. Rahim ◽  
M.A. Iqbal ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
W. Razak ◽  
...  

Plastic Leaded Chip Carrier (PLCC) package has been emerged a promising option to tackle the thermal management issue of micro-electronic devices. In the present study, three dimensional numerical analysis of heat and fluid flow through PLCC packages oriented in-line and mounted horizontally on a printed circuit board, is carried out using a commercial CFD code, FLUENTTM. The simulation is performed for 12 PLCC under different inlet velocities and chip powers. The contours of average junction temperatures are obtained for each package under different conditions. It is observed that the junction temperature of the packages decreases with increase in inlet velocity and increases with chip power. Moreover, the increase in package density significantly contributed to rise in temperature of chips. Thus the present simulation demonstrates that the chip density (the number of packages mounted on a given area), chip power and the coolant inlet velocity are strongly interconnected; hence their appropriate choice would be crucial.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


2017 ◽  
Vol 112 ◽  
pp. 1566-1574 ◽  
Author(s):  
Nima Tirandaz ◽  
Maziar Dehghan ◽  
Mohammad Sadegh Valipour

2020 ◽  
Vol XXIII (2) ◽  
pp. 32-36
Author(s):  
Avram Elena Rita

The current paper analyzed the new trends and challenges in heat exchanger technologies. The progress of the studies on mini and micro devices used in industry are presented. Particular attention is paid to the heat exchangers used in marine and chemical industries where the resistance to heat transfer increases due to the fouling or scaling. In the industry, there are very important the reduction in the size of devices, and the micro heat exchangers, due to its variety of advantages offered, are well recognized for their higher performance. The applications of them are ranging from process control to military applications. New engineering approaches for modeling the heat and fluid flow processes in micro heat exchangers are analyzed in the present paper. One of these is based on the dimensional analysis and principles of similitude theory that allow the modeling of microscale systems using a physical system at the mini scale. There are identified constant relationships between dimensions permitting the analysis of the fluid flow through micro channels.


2010 ◽  
Vol 2 (5) ◽  
pp. 17-22
Author(s):  
Inga Jakštonienė ◽  
Petras Vaitiekūnas

The paper describes the numerical modelling of the swirling fluid flow in the Stairmand cyclone (conical reverse-flow – CRF) with tangential inlet (equipment for separating solid particles from the gaseous fluid flow). A review of experimental and theoretical papers is conducted introducing three-dimen­sional differential equations for transfer processes. The numerical modelling of the Stairmand cyclone the height of which is 0.75 m, diameter – 0.17 m, the height of a cylindrical part – 0.290 m, a conical part – 0,39 m and an inlet area is 0,085×0,032 m is presented. When governing three-dimensional fluid flow, transfer equations Navje-Stokes and Reynolds are solved using the finite volume method in a body-fitted co-ordinate system using standard k– e and RNG k– e model of turbulence. Modelling is realised for inlet velocity 4.64, 9.0 and 14.8 m/s (flow rate was 0.0112, 0.0245 and 0.0388 m3/s). The results obtained from the numerical tests have demonstrated that the RNG k– e model of turbulence yields a reasonably good prediction for highly swirling flows in cyclones: the presented numerical results (tangential and radial velocity profiles) are compared with numerical and experimental data obtained by other authors. The mean relative error of ± 7,5% is found.


Sign in / Sign up

Export Citation Format

Share Document