Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number

2007 ◽  
Vol 571 ◽  
pp. 327-357 ◽  
Author(s):  
K. PARKER ◽  
K. D. VON ELLENRIEDER ◽  
J. SORIA

A study of the morphology of the vortical skeleton behind a flapping NACA0030 wing with a finite aspect ratio of 3, is undertaken. The motivation for this work originates with the proposal that thrust can be efficiently produced by flapping aerofoils. The test condition corresponds to a Strouhal number of 0.35, Reynolds number, based on aerofoil chord, of 600 and an amplitude of flapping, equal to the chord length of the wing. This test condition corresponds to the optimal thrust-producing case in infinite-span flapping wings. This study investigates the effect of wing three-dimensionality on the structure of the wake-flow. This is accomplished here, by quantitatively describing the spatio-temporal variations in the velocity, vorticity and Reynolds stresses for the finite-span-wing case.Preliminary flow visualizations suggest that the presence of wingtip vortices for the three-dimensional-wing case, create a different vortical structure to the two-dimensional-wing case. In the case of a two-dimensional-wing, the flow is characterized by the interaction of leading- and trailing-edge vorticity, resulting in the formation of a clear reverse Kármán vortex street at the selected test condition. In the case of a three-dimensional-wing, the flow exhibits a high degree of complexity and three-dimensionality, particularly in the midspan region. Using phase-averaged particle image velocimetry measurements of the forced oscillatory flow, a quantitative analysis in the plane of symmetry of the flapping aerofoil was undertaken. Using a triple decomposition of the measured velocities, the morphological characteristics of the spanwise vorticity is found to be phase correlated with the aerofoil kinematics. Reynolds stresses in the direction of oscillation are the dominant dissipative mechanism. The mean velocity profiles resemble a jet, indicative of thrust production. Pairs of strong counter-rotating vortices from the leading- and trailing-edge of the aerofoil are shed into the flow at each half-cycle. The large-scale structure of the flow is characterized by constructive merging of spanwise vorticity. The midspan region is populated by cross-sections of interconnected vortex rings.

2010 ◽  
Vol 648 ◽  
pp. 225-256 ◽  
Author(s):  
B. E. STEWART ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN

A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow.Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding.An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.


1999 ◽  
Vol 385 ◽  
pp. 325-358 ◽  
Author(s):  
ASGHAR ESMAEELI ◽  
GRÉTAR TRYGGVASON

Direct numerical simulations of the motion of two- and three-dimensional finite Reynolds number buoyant bubbles in a periodic domain are presented. The full Navier–Stokes equations are solved by a finite difference/front tracking method that allows a fully deformable interface between the bubbles and the ambient fluid and the inclusion of surface tension. The rise Reynolds numbers are around 20–30 for the lowest volume fraction, but decrease as the volume fraction is increased. The rise of a regular array of bubbles, where the relative positions of the bubbles are fixed, is compared with the evolution of a freely evolving array. Generally, the freely evolving array rises slower than the regular one, in contrast to what has been found earlier for low Reynolds number arrays. The structure of the bubble distribution is examined and it is found that while the three-dimensional bubbles show a tendency to line up horizontally, the two-dimensional bubbles are nearly randomly distributed. The effect of the number of bubbles in each period is examined for the two-dimensional system and it is found that although the rise Reynolds number is nearly independent of the number of bubbles, the velocity fluctuations in the liquid (the Reynolds stresses) increase with the size of the system. While some aspects of the fully three-dimensional flows, such as the reduction in the rise velocity, are predicted by results for two-dimensional bubbles, the structure of the bubble distribution is not. The magnitude of the Reynolds stresses is also greatly over-predicted by the two-dimensional results.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


1998 ◽  
Vol 360 ◽  
pp. 41-72 ◽  
Author(s):  
J. M. ANDERSON ◽  
K. STREITLIEN ◽  
D. S. BARRETT ◽  
M. S. TRIANTAFYLLOU

Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.


1996 ◽  
Vol 328 ◽  
pp. 19-48 ◽  
Author(s):  
E. P. L. Roberts ◽  
M. R. Mackley

We report experimental and numerical observations on the way initially symmetric and time-periodic fluid oscillations in baffled channels develop in complexity. Experiments are carried out in a spatially periodic baffled channel with a sinusoidal oscillatory flow. At modest Reynolds number the observed vortex structure is symmetric and time periodic. At higher values the flow progressively becomes three-dimensional, asymmetric and aperiodic. A two-dimensional simulation of incompressible Newtonian flow is able to follow the flow pattern at modest oscillatory Reynolds number. At higher values we report the development of both asymmetry and a period-doubling cascade leading to a chaotic flow regime. A bifurcation diagram is constructed that can describe the progressive increase in complexity of the flow.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


1951 ◽  
Vol 55 (481) ◽  
pp. 43-51
Author(s):  
W. F. Hilton

Measurements were made of the downwash effects behind two finite wings 3.1 percent, thick, having square and 20° raked tips respectively. The tests were conducted at a Mach number of 1.45 and a Reynolds number of 1.2 millions by traversing a yawmeter 1.62 chords behind the trailing edge of the finite wings.In general, a maximum downwash of the order of ½° per degree of wing incidence was observed in that portion of the tip Mach cone behind the wing, and a maximum upwash of similar magnitude was observed in that part of the tip Mach cone situated outboard of the wing.Thus it is apparent that these effects are large enough to affect the lift on any surface situated in the tip Mach cone behind a finite wing. In particular, placing the rear surface in the downwash region behind a finite wing, will tend to reduce the overall lift while placing it in the upwash region will tend to magnifiy the variations of lift initiated by the finite wing.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1498 ◽  
Author(s):  
Taraprasad Bhowmick ◽  
Yong Wang ◽  
Michele Iovieno ◽  
Gholamhossein Bagheri ◽  
Eberhard Bodenschatz

The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian trend, indicating a variation in its sample number density inversely proportional to the squared of its magnitude. We observe this universal form of population distribution both in the symmetric wake regime and in the more complex three dimensional wake structure of the steady oblique regime with Reynolds number larger than 225. The population density distribution identifies the increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number, whereas the dimensionless scalar population density shows negligible variation with the Reynolds number. Descriptive statistics in the form of population density distribution of the spatial distribution of the fluid velocity and the transported scalar quantities is important for understanding the transport and local reaction processes in specific regions of the wake, which can be used e.g., for understanding the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets interact physically or chemically with the environment.


Sign in / Sign up

Export Citation Format

Share Document