scholarly journals Convective instability and transient growth in flow over a backward-facing step

2008 ◽  
Vol 603 ◽  
pp. 271-304 ◽  
Author(s):  
H. M. BLACKBURN ◽  
D. BARKLEY ◽  
S. J. SHERWIN

Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components.

2011 ◽  
Vol 693 ◽  
pp. 1-27 ◽  
Author(s):  
Daniel Lanzerstorfer ◽  
Hendrik C. Kuhlmann

AbstractThe two-dimensional, incompressible flow over a backward-facing step is considered for a systematic variation of the geometry covering expansion ratios (step to outlet height) from 0.25 to 0.975. A global temporal linear stability analysis shows that the basic flow becomes unstable to different three-dimensional modes depending on the expansion ratio. All critical modes are essentially confined to the region behind the step extending downstream up to the reattachment point of the separated eddy. An energy-transfer analysis is applied to understand the physical nature of the instabilities. If scaled appropriately, the critical Reynolds number approaches a finite asymptotic value for very large step heights. In that case centrifugal forces destabilize the flow with respect to an oscillatory critical mode. For moderately large expansion ratios an elliptical instability mechanism is identified. If the step height is further decreased the critical mode changes from oscillatory to stationary. In addition to the elliptical mechanism, the strong shear in the layer emanating from the sharp corner of the step supports the amplification process of the critical mode. For very small step heights the basic state becomes unstable due to the lift-up mechanism, which feeds back on itself via the recirculating eddy behind the step, resulting in a steady critical mode comprising pronounced slow and fast streaks.


2002 ◽  
Vol 473 ◽  
pp. 167-190 ◽  
Author(s):  
DWIGHT BARKLEY ◽  
M. GABRIELA M. GOMES ◽  
RONALD D. HENDERSON

Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized to the primary separation bubble and has a flat roll structure with a spanwise wavelength of 6.9 step heights. The system is further shown to be absolutely stable to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra and visualizations of the global modes of the system are presented for representative Reynolds numbers.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 37
Author(s):  
Helena Vitoshkin ◽  
Alexander Gelfgat

A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full three-dimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found that the transient growth of two-dimensional disturbances diminishes with the strengthening of stratification, while three-dimensional disturbances cause significant non-modal growth, even for a strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and does not necessarily weaken with the increase of the Richardson number. The optimal perturbation consists of two waves traveling in opposite directions. Compared to the two-dimensional transient growth, the three-dimensional growth is found to be larger, taking place at shorter times. The non-modal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence of the structures determined by the transient growth analysis.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


1972 ◽  
Vol 1 (13) ◽  
pp. 146
Author(s):  
Joseph L. Hammack ◽  
Frederic Raichlen

A linear theory is presented for waves generated by an arbitrary bed deformation {in space and time) for a two-dimensional and a three -dimensional fluid domain of uniform depth. The resulting wave profile near the source is computed for both the two and three-dimensional models for a specific class of bed deformations; experimental results are presented for the two-dimensional model. The growth of nonlinear effects during wave propagation in an ocean of uniform depth and the corresponding limitations of the linear theory are investigated. A strategy is presented for determining wave behavior at large distances from the source where linear and nonlinear effects are of equal magnitude. The strategy is based on a matching technique which employs the linear theory in its region of applicability and an equation similar to that of Korteweg and deVries (KdV) in the region where nonlinearities are equal in magnitude to frequency dispersion. Comparison of the theoretical computations with the experimental results indicates that an equation of the KdV type is the proper model of wave behavior at large distances from the source region.


2005 ◽  
Vol 127 (9) ◽  
pp. 1027-1036 ◽  
Author(s):  
J. G. Barbosa Saldana ◽  
N. K. Anand ◽  
V. Sarin

Laminar mixed convective flow over a three-dimensional horizontal backward-facing step heated from below at a constant temperature was numerically simulated using a finite volume technique and the most relevant hydrodynamic and thermal features for air flowing through the channel are presented in this work. The channel considered in this work has an aspect ratio AR=4, and an expansion ratio ER=2, while the total length in the streamwise direction is 52 times the step height (L=52s) and the step length is equal to 2 times the step height (l=2s). The flow at the duct entrance was considered to be hydrodynamically fully developed and isothermal. The bottom wall of the channel was subjected to a constant high temperature while the other walls were treated to be adiabatic. The step was considered to be a thermally conducting block.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


Author(s):  
Kiran Manoharan ◽  
Santosh Hemchandra

Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms — (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.


2007 ◽  
Vol 588 ◽  
pp. 43-58 ◽  
Author(s):  
H. P. RANI ◽  
TONY W. H. SHEU ◽  
ERIC S. F. TSAI

In the present study, flow simulation has been carried out in a backward-facing step channel defined by an expansion ratio of 2.02 and a spanwise aspect ratio of 8 to provide the physical insight into the longitudinal and spanwise flow motions and to identify the presence of Taylor–Görtler-like vortices. The Reynolds numbers have been taken as 1000 and 2000, which fall in the category of transitional flow. The present simulated results were validated against the experimental and numerical data and the comparison was found to be satisfactory. The simulated results show that the flow becomes unsteady and exhibits a three-dimensional nature with the Kelvin–Helmholtz instability oscillations and Taylor–Görtler-Like longitudinal vortices. The simulated data were analysed to give an in-depth knowledge of the complex interactions among the floor and roof eddies, and the spiralling spanwise flow motion. Destabilization of the present incompressible flow system, with the amplified Reynolds number due to the Kelvin–Helmholtz and Taylor–Görtler instabilities, is also highlighted. A movie is available with the online version of the paper.


Author(s):  
X. Liu ◽  
J. S. Marshall

A computational study is reported that examines the transient growth of three-dimensional flow features for nominally parallel vortex-cylinder interaction problems. We consider a helical vortex with small-amplitude perturbations that is advected onto a circular cylinder whose axis is parallel to the nominal vortex axis. The study assesses the applicability of the two-dimensional flow assumption for parallel vortex-body interaction problems in which the body impinges on the vortex core. The computations are performed using an unstructured finite-volume method for an incompressible flow, with periodic boundary conditions along the cylinder axis. Growth of three-dimensional flow features is quantified by use of a proper-orthogonal decomposition of the Fourier-transformed velocity and vorticity fields in the cylinder azimuthal and axial directions. The interaction is examined for different axial wavelengths and amplitudes of the initial helical waves on the vortex core, and the results for cylinder force are compared to the two-dimensional results. The degree of perturbation amplification as the vortex approaches the cylinder is quantified and shown to be mostly dependent on the dominant axial wavenumber of the perturbation. The perturbation amplification is observed to be greatest for perturbations with axial wavelength of about 1.5 times the cylinder diameter.


Sign in / Sign up

Export Citation Format

Share Document