scholarly journals Non-Modal Three-Dimensional Optimal Perturbation Growth in Thermally Stratified Mixing Layers

Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 37
Author(s):  
Helena Vitoshkin ◽  
Alexander Gelfgat

A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full three-dimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found that the transient growth of two-dimensional disturbances diminishes with the strengthening of stratification, while three-dimensional disturbances cause significant non-modal growth, even for a strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and does not necessarily weaken with the increase of the Richardson number. The optimal perturbation consists of two waves traveling in opposite directions. Compared to the two-dimensional transient growth, the three-dimensional growth is found to be larger, taking place at shorter times. The non-modal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence of the structures determined by the transient growth analysis.

2014 ◽  
Vol 758 ◽  
Author(s):  
A. K. Kaminski ◽  
C. P. Caulfield ◽  
J. R. Taylor

AbstractWe investigate numerically transient linear growth of three-dimensional perturbations in a stratified shear layer to determine which perturbations optimize the growth of the total kinetic and potential energy over a range of finite target time intervals. The stratified shear layer has an initial parallel hyperbolic tangent velocity distribution with Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}=U_0 h/\nu =1000$ and Prandtl number $\nu /\kappa =1$, where $\nu $ is the kinematic viscosity of the fluid and $\kappa $ is the diffusivity of the density. The initial stable buoyancy distribution has constant buoyancy frequency $N_0$, and we consider a range of flows with different bulk Richardson number ${\mathit{Ri}}_b=N_0^2h^2/U_0^2$, which also corresponds to the minimum gradient Richardson number ${\mathit{Ri}}_g(z)=N_0^2/(\mathrm{d}U/\mathrm{d} z)^2$ at the midpoint of the shear layer. For short target times, the optimal perturbations are inherently three-dimensional, while for sufficiently long target times and small ${\mathit{Ri}}_b$ the optimal perturbations are closely related to the normal-mode ‘Kelvin–Helmholtz’ (KH) instability, consistent with analogous calculations in an unstratified mixing layer recently reported by Arratia et al. (J. Fluid Mech., vol. 717, 2013, pp. 90–133). However, we demonstrate that non-trivial transient growth occurs even when the Richardson number is sufficiently high to stabilize all normal-mode instabilities, with the optimal perturbation exciting internal waves at some distance from the midpoint of the shear layer.


2008 ◽  
Vol 612 ◽  
pp. 237-260 ◽  
Author(s):  
JÉRÔME FONTANE ◽  
LAURENT JOLY

We perform a three-dimensional stability analysis of the Kelvin–Helmholtz (KH) billow, developing in a shear layer between two fluids with different density. We begin with two-dimensional simulations of the temporally evolving mixing layer, yielding the unsteady base flow fields. The Reynolds number is 1500 while the Schmidt and Froude numbers are infinite. Then exponentially unstable modes are extracted from a linear stability analysis performed at the saturation of the primary mode kinetic energy. The spectrum of the least stable modes exhibits two main classes. The first class comprises three-dimensional core-centred and braid-centred modes already present in the homogeneous case. The baroclinic vorticity concentration in the braid lying on the light side of the KH billow turns the flow into a sharp vorticity ridge holding high shear levels. The hyperbolic modes benefit from the enhanced level of shear in the braid whereas elliptic modes remain quite insensitive to the modifications of the base flow. In the second class, we found typical two-dimensional modes resulting from a shear instability of the curved vorticity-enhanced braid. For a density contrast of 0.5, the wavelength of the two-dimensional instability is about ten times shorter than that of the primary wave. Its amplification rate competes well against those of the hyperbolic three-dimensional modes. The vorticity-enhanced braid thus becomes the preferred location for the development of secondary instabilities. This stands as the key feature of the transition of the variable-density mixing layer. We carry out a fully resolved numerical continuation of the nonlinear development of the two-dimensional braid-mode. Secondary roll-ups due to a small-scale Kelvin–Helmholtz mechanism are promoted by the underlying strain field and develop rapidly in the compression part of the braid. Originally analysed by Reinoud et al. (Phys. Fluids, vol. 12, 2000, p. 2489) from two-dimensional non-viscous numerical simulations, this instability is shown to substantially increase the mixing.


2013 ◽  
Vol 717 ◽  
pp. 90-133 ◽  
Author(s):  
C. Arratia ◽  
C. P. Caulfield ◽  
J.-M. Chomaz

AbstractWe investigate numerically the transient linear growth of three-dimensional (3D) perturbations in a homogeneous time-evolving mixing layer in order to identify which perturbations are optimal in terms of their kinetic energy gain over a finite, predetermined time interval. We model the mixing layer with an initial parallel velocity distribution $\mathbi{U}(y)= {U}_{0} \tanh (y/ d)\mathbi{e}_{x}$ with Reynolds number $Re= {U}_{0} d/ \nu = 1000$, where $\nu $ is the kinematic viscosity of the fluid. We consider a range of time intervals on both a constant ‘frozen’ base flow and a time-dependent two-dimensional (2D) flow associated with the growth and nonlinear saturation of two wavelengths of the most-unstable eigenmode of linear theory of the initial parallel velocity distribution, which rolls up into two classical Rayleigh instabilities commonly referred to as Kelvin–Helmholtz (KH) billows, which eventually pair to form a larger vortex. For short times, the most-amplified perturbations on the frozen $\tanh $ profile are inherently 3D, and are most appropriately described as oblique wave ‘OL’ perturbations which grow through a combination of the Orr and lift-up mechanisms, while for longer times, the optimal perturbations are 2D and similar to the KH normal mode, with a slight enhancement of gain. For the time-evolving KH base flow, OL perturbations continue to dominate over sufficiently short time intervals. However, for longer time intervals which involve substantial evolution of the primary KH billows, two broad classes of inherently 3D linear optimal perturbation arise, associated at low wavenumbers with the well-known core-centred elliptical translative instability, and at higher wavenumbers with the braid-centred hyperbolic instability. The hyperbolic perturbation is relatively inefficient in exploiting the gain of the OL perturbations, and so only dominates the smaller wavenumber (ultimately) core-centred perturbations when the time evolution of the base flow or the start time of the optimization interval does not allow the OL perturbations much opportunity to grow. When the OL perturbations can grow, they initially grow in the braid, and then trigger an elliptical core-centred perturbation by a strong coupling with the primary KH billow. If the optimization time interval includes pairing of the primary billows, the secondary elliptical perturbations are strongly suppressed during the pairing event, due to the significant disruption of the primary billow cores during pairing.


2008 ◽  
Vol 603 ◽  
pp. 271-304 ◽  
Author(s):  
H. M. BLACKBURN ◽  
D. BARKLEY ◽  
S. J. SHERWIN

Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components.


1999 ◽  
Vol 379 ◽  
pp. 23-38 ◽  
Author(s):  
VIVEK SAXENA ◽  
SIDNEY LEIBOVICH ◽  
GAL BERKOOZ

Enhancement of the temporal growth rate of inviscid three-dimensional instability waves in free shear layers by deformation of the basic flow is studied. The deformation of a two-dimensional mixing layer is assumed to yield a base flow that remains unidirectional, but has a steady spanwise speed variation in addition to the two- dimensional shear. The computed growth rates for hyperbolic tangent base flow, perturbed this way, show enhanced instability in the sense that the neutral waves of the unperturbed flow exhibit positive growth rates. For each imposed spanwise periodicity, an oblique mode is selected that shows maximum growth rate. The results are consistent with related theoretical studies and with qualitative observations in experiments.


2012 ◽  
Vol 698 ◽  
pp. 335-357 ◽  
Author(s):  
Mark C. Thompson

AbstractPrevious experimental studies have shown that the steady recirculation bubble that forms as the flow separates at the leading-edge corner of a long plate, becomes unsteady at relatively low Reynolds numbers of only a few hundreds. The reattaching shear layer irregularly releases two-dimensional vortices, which quickly undergo three-dimensional transition. Similar to the flow over a backward-facing step, this flow is globally stable at such Reynolds numbers, with transition to a steady three-dimensional flow as the first global instability to occur as the Reynolds number is increased to 393. Hence, it appears that the observed flow behaviour is governed by transient growth of optimal two-dimensional transiently growing perturbations (constructed from damped global modes) rather than a single three-dimensional unstable global mode. This paper quantifies the details of the transient growth of two- and three-dimensional optimal perturbations, and compares the predictions to other related cases examined recently. The optimal perturbation modes are shown to be highly concentrated in amplitude in the vicinity of the leading-edge corners and evolve to take the local shape of a Kelvin–Helmholtz shear-layer instability further downstream. However, the dominant mode reaches a maximum amplitude downstream of the position of the reattachment point of the shear layer. The maximum energy growth increases at 2.5 decades for each increment in Reynolds number of 100. Maximum energy growth of the optimal perturbation mode at a Reynolds number of 350 is greater than $1{0}^{4} $, which is typically an upper limit of the Reynolds number range over which it is possible to observe steady flow experimentally. While transient growth analysis concentrates on the evolution of wavepackets rather than continuous forcing, this appears consistent with longitudinal turbulence levels of up to 1 % for some water tunnels, and the fact that the optimal mode is highly concentrated close to the leading-edge corner so that an instantaneous projection of a perturbation field from a noisy inflow onto the optimal mode can be significant. Indeed, direct simulations with inflow noise reveal that a root-mean-square noise level of just 0.1 % is sufficient to trigger some unsteadiness at $\mathit{Re}= 350$, while a 0.5 % level results in sustained shedding. Three-dimensional optimal perturbation mode analysis was also performed showing that at $\mathit{Re}= 350$, the optimal mode has a spanwise wavelength of 11.7 plate thicknesses and is amplified 20 % more than the two-dimensional optimal disturbance. The evolved three-dimensional mode shows strong streamwise vortical structures aligned at a shallow angle to the plate top surface.


1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


1962 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
J. C. Cooke

SummaryA three-dimensional laminar-boundary-layer calculation is carried out over the area concerned. The external flow is simplified, being calculated by slender-body theory assuming conical flow, with two point vortices above the wing, their positions and strength being determined by experiment. Attempts are made to draw transition fronts both for two-dimensional and sweep instability from this calculation. The combination of these gives fronts similar to those observed in some experiments. Because there is little or no pressure gradient over the area in question it is suggested that it is a region where distributed suction might usefully be applied in order to maintain laminar flow and reduce drag.


Sign in / Sign up

Export Citation Format

Share Document