The approach of a sphere to a wall at finite Reynolds number

2010 ◽  
Vol 661 ◽  
pp. 229-238 ◽  
Author(s):  
A. MONGRUEL ◽  
C. LAMRIBEN ◽  
S. YAHIAOUI ◽  
F. FEUILLEBOIS

The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is also of the order of unity, so that the particle motion far from the wall is driven by inertia. In the close vicinity of the wall, however, the particle–wall hydrodynamic interaction decelerates the particle significantly. An interferometric device is used to measure the vertical displacement of a millimetric size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a spatial resolution of 100 nm. For the range of impact Stokes number (St*, based on the limit velocity of the sphere in an unbounded fluid) explored here (up to St* ≅ 5), the measurements reveal that a small region of negligible particle inertia still exists just prior to contact of the sphere with the wall. In this lubrication-like region, the particle velocity decreases linearly with decreasing particle–wall distance and vanishes at contact, ruling out the possibility of a rebound. The vertical extent of this region decreases with increasing Stokes number and is e.g. only 10 μm large at impact Stokes number St* ≅ 5.

2013 ◽  
Vol 738 ◽  
pp. 563-590 ◽  
Author(s):  
T. Rosén ◽  
F. Lundell ◽  
C. K. Aidun

AbstractThe basic dynamics of a prolate spheroidal particle suspended in shear flow is studied using lattice Boltzmann simulations. The spheroid motion is determined by the particle Reynolds number (${\mathit{Re}}_{p} $) and Stokes number ($\mathit{St}$), estimating the effects of fluid and particle inertia, respectively, compared with viscous forces on the particle. The particle Reynolds number is defined by ${\mathit{Re}}_{p} = 4G{a}^{2} / \nu $, where $G$ is the shear rate, $a$ is the length of the spheroid major semi-axis and $\nu $ is the kinematic viscosity. The Stokes number is defined as $\mathit{St}= \alpha \boldsymbol{\cdot} {\mathit{Re}}_{p} $, where $\alpha $ is the solid-to-fluid density ratio. Here, a neutrally buoyant prolate spheroidal particle ($\mathit{St}= {\mathit{Re}}_{p} $) of aspect ratio (major axis/minor axis) ${r}_{p} = 4$ is considered. The long-term rotational motion for different initial orientations and ${\mathit{Re}}_{p} $ is explained by the dominant inertial effect on the particle. The transitions between rotational states are subsequently studied in detail in terms of nonlinear dynamics. Fluid inertia is seen to cause several bifurcations typical for a nonlinear system with odd symmetry around a double zero eigenvalue. Particle inertia gives rise to centrifugal forces which drives the particle to rotate with the symmetry axis in the flow-gradient plane (tumbling). At high ${\mathit{Re}}_{p} $, the motion is constrained to this planar motion regardless of initial orientation. At a certain critical Reynolds number, ${\mathit{Re}}_{p} = {\mathit{Re}}_{c} $, a motionless (steady) state is created through an infinite-period saddle-node bifurcation and consequently the tumbling period near the transition is scaled as $\vert {\mathit{Re}}_{p} - {\mathit{Re}}_{c} {\vert }^{- 1/ 2} $. Analyses in this paper show that if a transition from tumbling to steady state occurs at ${\mathit{Re}}_{p} = {\mathit{Re}}_{c} $, then any parameter $\beta $ (e.g. confinement or particle spacing) that influences the value of ${\mathit{Re}}_{c} $, such that ${\mathit{Re}}_{p} = {\mathit{Re}}_{c} $ as $\beta = {\beta }_{c} $, will lead to a period that scales as $\vert \beta - {\beta }_{c} {\vert }^{- 1/ 2} $ and is independent of particle shape or any geometric aspect ratio in the flow.


2014 ◽  
Vol 749 ◽  
pp. 145-166 ◽  
Author(s):  
Wenbin Mao ◽  
Alexander Alexeev

AbstractIn this article, we investigate the motion of a solid spheroid particle in a simple shear flow. Using a lattice Boltzmann method, we examine individual effects of fluid inertia and particle rotary inertia as well as their combination on the dynamics and trajectory of spheroid particles at low and moderate Reynolds numbers. The motion of a single spheroid is shown to be dependent on the particle Reynolds number, particle aspect ratio, particle initial orientation and the Stokes number. Spheroids with random initial orientations are found to drift to stable orbits influenced by fluid inertia and/or particle inertia. Specifically, prolate spheroids drift towards the tumbling mode of motion, whereas oblate spheroids drift to the rolling mode. The rotation period and the variation of angular velocity of tumbling spheroids decrease as Stokes number increases. With increasing Reynolds number, both the maximum and minimum values of angular velocity decrease, whereas the particle rotation period increases. We show that particle inertia does not affect the hydrodynamic torque on the particle. We also demonstrate that superposition can be used to estimate the combined effect of fluid inertia and particle inertia on the dynamics of spheroid particles at sufficiently low Reynolds numbers.


2016 ◽  
Vol 13 (04) ◽  
pp. 1641012
Author(s):  
Qingjie Meng ◽  
Decheng Wan

The unsteady viscous flow around a 12000TEU ship model entering the Third Set of Panama Locks with different eccentricity is simulated by solving the unsteady Reynolds averaged Navier–Stokes (RANS) equations in combination with the [Formula: see text]SST turbulence model. Overset grid technology is utilized to maintain grid orthogonality and the effects of the free surface are taken into account. The hydrodynamic forces, vertical displacement as well as surface pressure distribution are predicted and analyzed. First, a benchmark test case is designed to validate the capability of the present methods in the prediction of the viscous flow around the ship when maneuvering into the lock. The accumulation of water in front of the ship during entry into a lock is noticed. A set of systematic computations with different eccentricity are then carried out to examine the effect of eccentricity on the ship–lock hydrodynamic interaction.


Author(s):  
Yoshimichi Hagiwara ◽  
Hideto Fujii ◽  
Katsutoshi Sakurai ◽  
Takashi Kuroda ◽  
Atsuhide Kitagawa

The Stokes number, the ratio of the particle time scale to flow time scale, is a promising quantity for estimating changes in statistics of turbulence due to particles. First, we explored the Stokes numbers in some recent studies. Secondly, we discussed the results of our direct numerical simulation for turbulent flow with a high-density particle in a vertical duct. In the discussion, we defined the particle Reynolds number from the mean fluid velocity in the near-particle region at any time. We evaluated a new local Stokes number for the particle. It is found that the Stokes number is effective for the prediction of the distance between the particle center and one wall. Finally, we carried out experiments for turbulent water flow with aluminum balls of 1 mm in diameter in a vertical channel. The motions of aluminum balls and tracer particles in the flow were captured with a high-speed video camera. We found that the experimental results for the time changes in the wall-normal distance of the ball and the particle Reynolds number for the ball are similar to the predicted results.


2018 ◽  
Vol 845 ◽  
pp. 499-519 ◽  
Author(s):  
Jesse Capecelatro ◽  
Olivier Desjardins ◽  
Rodney O. Fox

Turbulent wall-bounded flows exhibit a wide range of regimes with significant interaction between scales. The fluid dynamics associated with single-phase channel flows is predominantly characterized by the Reynolds number. Meanwhile, vastly different behaviour exists in particle-laden channel flows, even at a fixed Reynolds number. Vertical turbulent channel flows seeded with a low concentration of inertial particles are known to exhibit segregation in the particle distribution without significant modification to the underlying turbulent kinetic energy (TKE). At moderate (but still low) concentrations, enhancement or attenuation of fluid-phase TKE results from increased dissipation and wakes past individual particles. Recent studies have shown that denser suspensions significantly alter the two-phase dynamics, where the majority of TKE is generated by interphase coupling (i.e.  drag) between the carrier gas and clusters of particles that fall near the channel wall. In the present study, a series of simulations of vertical particle-laden channel flows with increasing mass loading is conducted to analyse the transition from the dilute limit where classical mean-shear production is primarily responsible for generating fluid-phase TKE to high-mass-loading suspensions dominated by drag production. Eulerian–Lagrangian simulations are performed for a wide range of particle loadings at two values of the Stokes number, and the corresponding two-phase energy balances are reported to identify the mechanisms responsible for the observed transition.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041989724 ◽  
Author(s):  
Liang Zhang ◽  
JiaWei Zhou ◽  
Bo Zhang ◽  
Wei Gong

Erosion in pipeline caused by solid particles, which may lead to premature failure of the pipe system, is regarded as one of the most important concerns in the field of oil and gas. Therefore, the Euler–Lagrange, erosion model, and discrete phase model are applied for the purpose of simulating the erosion of water–hydrate–solid flow in submarine hydrate transportation pipeline. In this article, the flow and erosion characteristics are well verified on the basis of experiments. Moreover, analysis is conducted to have a good understanding of the effects of hydrate volume, mean curvature radius/pipe diameter ( R/ D) rate, flow velocity, and particle diameter on elbow erosion. It is finally obtained that the hydrate volume directly affects the Reynolds number through viscosity and the trend of the Reynolds number is consistent with the trend of erosion rate. Taking into account different R/ D rates, the same Stokes number reflects different dynamic transforms of the maximum erosion zone. However, the outmost wall (zone D) will be the final erosion zone when the value of the Stokes number increases to a certain degree. In addition, the erosion rate increases sharply along with the increase of flow velocity and particle diameter. The effect of flow velocity on the erosion zone can be ignored in comparison with the particle diameter. Moreover, it is observed that flow velocity is deemed as the most sensitive factor on erosion rate among these factors employed in the orthogonal experiment.


Sign in / Sign up

Export Citation Format

Share Document