scholarly journals Drag and lift forces on a counter-rotating cylinder in rotating flow

2010 ◽  
Vol 664 ◽  
pp. 150-173 ◽  
Author(s):  
CHAO SUN ◽  
TOM MULLIN ◽  
LEEN VAN WIJNGAARDEN ◽  
DETLEF LOHSE

Results are reported of an experimental investigation into the motion of a heavy cylinder free to move inside a water-filled drum rotating around its horizontal axis. The cylinder is observed to either co-rotate or, counter-intuitively, counter-rotate with respect to the rotating drum. The flow was measured with particle image velocimetry, and it was found that the inner cylinder significantly altered the bulk flow field from the solid-body rotation found for a fluid-filled drum. In the counter-rotation case, the generated lift force allowed the cylinder to freely rotate without contact with the drum wall. Drag and lift coefficients of the freely counter-rotating cylinder were measured over a wide range of Reynolds numbers, 2500 < Re < 25000, dimensionless rotation rates, 0.0 < α < 1.2, and gap to cylinder diameter ratios 0.003 < G/2a < 0.5. Drag coefficients were consistent with previous measurements on a cylinder in a uniform flow. However, for the lift coefficient, considerably larger values were observed in the present measurements. We found the enhancement of the lift force to be mainly caused by the vicinity of the wall.

2011 ◽  
Vol 682 ◽  
pp. 434-459 ◽  
Author(s):  
MARIE RASTELLO ◽  
JEAN-LOUIS MARIÉ ◽  
MICHEL LANCE

A single bubble is placed in a solid-body rotating flow of silicon oil. From the measurement of its equilibrium position, lift and drag forces are determined. Five different silicon oils have been used, providing five different viscosities and Morton numbers. Experiments have been performed over a wide range of bubble Reynolds numbers (0.7 ≤ Re ≤ 380), Rossby numbers (0.58 ≤ Ro ≤ 26) and bubble aspect ratios (1 ≤ χ ≤ 3). For spherical bubbles, the drag coefficient at the first order is the same as that of clean spherical bubbles in a uniform flow. It noticeably increases with the local shear S = Ro−1, following a Ro−5/2 power law. The lift coefficient tends to 0.5 for large Re numbers and rapidly decreases as Re tends to zero, in agreement with existing simulations. It becomes hardly measurable for Re approaching unity. When bubbles start to shrink with Re numbers decreasing slowly, drag and lift coefficients instantaneously follow their stationary curves versus Re. In the standard Eötvös–Reynolds diagram, the transitions from spherical to deformed shapes slightly differ from the uniform flow case, with asymmetric shapes appearing. The aspect ratio χ for deformed bubbles increases with the Weber number following a law which lies in between the two expressions derived from the potential flow theory by Moore (J. Fluid Mech., vol. 6, 1959, pp. 113–130) and Moore (J. Fluid Mech., vol. 23, 1965, pp. 749–766) at low- and moderate We, and the bubble orients with an angle between its minor axis and the direction of the flow that increases for low Ro. The drag coefficient increases with χ, to an extent which is well predicted by the Moore (1965) drag law at high Re and Ro. The lift coefficient is a function of both χ and Re. It increases linearly with (χ − 1) at high Re, in line with the inviscid theory, while in the intermediate range of Reynolds numbers, a decrease of lift with aspect ratio is observed. However, the deformation is not sufficient for a reversal of lift to occur.


2018 ◽  
Vol 861 ◽  
pp. 200-222 ◽  
Author(s):  
Satoshi Nakashima ◽  
Mitul Luhar ◽  
Koji Fukagata

We study the effect of spanwise rotation in turbulent channel flow at both low and high Reynolds numbers by employing the resolvent formulation proposed by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382). Under this formulation, the nonlinear terms in the Navier–Stokes equations are regarded as a forcing that acts upon the remaining linear dynamics to generate the turbulent velocity field in response. A gain-based decomposition of the forcing–response transfer function across spectral space yields models for highly amplified flow structures, or modes. Unlike linear stability analysis, this enables targeted analyses of the effects of rotation on high-gain modes that serve as useful low-order models for dynamically important coherent structures in wall-bounded turbulent flows. The present study examines a wide range of rotation rates. A posteriori comparisons at low Reynolds number ($\mathit{Re}_{\unicode[STIX]{x1D70F}}=180$) demonstrate that the resolvent formulation is able to quantitatively predict the effect of varying spanwise rotation rates on specific classes of flow structure (e.g. the near-wall cycle) as well as energy amplification across spectral space. For fixed inner-normalized rotation number, the effects of rotation at varying friction Reynolds numbers appear to be similar across spectral space, when scaled in outer units. We also consider the effects of rotation on modes with varying speed (i.e. modes that are localized in regions of varying mean shear), and provide suggestions for modelling the nonlinear forcing term.


2015 ◽  
Vol 769 ◽  
Author(s):  
Anirudh Rao ◽  
Alexander Radi ◽  
Justin S. Leontini ◽  
Mark C. Thompson ◽  
John Sheridan ◽  
...  

Recent experimental research on rotating cylinder wakes has found that a previously numerically predicted subharmonic instability mode, mode C, occurs for considerably lower rotation rates than predicted through stability analysis, yet other mode transitions occur closer to the predicted onset. One difference between the theoretical and experimental set-ups is the use of a small-diameter hydrogen bubble visualisation wire placed upstream of the rotating cylinder. The current paper tests the hypothesis that a wire, of only $1/100$th of the cylinder diameter, placed five diameters upstream of the cylinder, sufficiently perturbs the flow to substantially affect certain wake transitions, including the onset of mode C. This is achieved using stability analysis of a flow that includes the upstream wire. The results indeed show that the wire of a tiny diameter induces a non-negligible asymmetry in the flow, triggering the subharmonic mode at substantially lower rotation rates. Furthermore, at higher rotation rates, the onset of two other three-dimensional modes are delayed to higher Reynolds numbers. These results make the point that even seemingly minute perturbations caused by minimally intrusive methods may result in substantially altered experimental flow behaviour.


Author(s):  
N.I. Kochurova ◽  
Ye.S. Parkhaev ◽  
N.V. Semenchikov

The paper considers the solutions to the multicriteria problem of optimizing the wing airfoil of a miniature unmanned aerial vehicle (MUAV) under various constraints. The study introduces the statement of the problem of multicriteria optimization of the airfoil shape, following the condition of MUAV horizontal flight, with an additional condition associated with a change in the flight Reynolds number of the MUAV wing. This statement of the problem allows us to optimize the airfoil, taking into account the load on the wing of the designed vehicle. The wing airfoil was optimized in a wide range of lift coefficients of Cya and Reynolds numbers. The study shows that taking into account the Reynolds number makes it possible to improve the quality of the result obtained during optimization, and introduces a technique for multicriteria optimization of the wing airfoil with sealed mechanization, i.e. with flaperon. Findings of research show that for equal values of the relative thickness, the mechanized airfoil obtained as a result of optimization has a lower center line camber (by 1.5%) than the optimized airfoil without mechanization, due to which a gain in the drag coefficient is achieved at close to zero values of the lift coefficient. The study shows how profitable the use of a wing airfoil with a flaperon on MUAV wings can be, in contrast to an airfoil without mechanization.


2007 ◽  
Vol 129 (9) ◽  
pp. 1203-1211 ◽  
Author(s):  
L. Labraga ◽  
G. Kahissim ◽  
L. Keirsbulck ◽  
F. Beaubert

The flow past a rotating cylinder placed within a uniform stream is investigated at Reynolds numbers ranging from 8500 to 17,000 to 34,000. The dimensionless rotation rate α (ratio of the cylinder peripheral speed to the free-stream velocity) varies from 0 to 7. The experimental investigation is based on laser-Doppler anemometry measurements and particle-image velocimetry (PIV) within a water channel. The analysis of the experimental results mainly concerns the location of the separation points as defined by various criteria. It is found that the criterion suggested by Moore, Rott and Sears (MRS) is met in the case of the downstream-moving walls. Moreover, this study shows that sufficient information was obtained to confirm that the MRS criterion is still valid even in the case of the upstream-moving walls. This is confirmed by the behavior of the vertical velocity component educed from the averaged two-dimensional flow field obtained by PIV measurements.


1999 ◽  
Vol 384 ◽  
pp. 183-206 ◽  
Author(s):  
RYOICHI KUROSE ◽  
SATORU KOMORI

The drag and lift forces acting on a rotating rigid sphere in a homogeneous linear shear flow are numerically studied by means of a three-dimensional numerical simulation. The effects of both the fluid shear and rotational speed of the sphere on the drag and lift forces are estimated for particle Reynolds numbers of 1[les ]Rep[les ]500.The results show that the drag forces both on a stationary sphere in a linear shear flow and on a rotating sphere in a uniform unsheared flow increase with increasing the fluid shear and rotational speed. The lift force on a stationary sphere in a linear shear flow acts from the low-fluid-velocity side to the high-fluid-velocity side for low particle Reynolds numbers of Rep<60, whereas it acts from the high-velocity side to the low-velocity side for high particle Reynolds numbers of Rep>60. The change of the direction of the lift force can be explained well by considering the contributions of pressure and viscous forces to the total lift in terms of flow separation. The predicted direction of the lift force for high particle Reynolds numbers is also examined through a visualization experiment of an iron particle falling in a linear shear flow of a glycerin solution. On the other hand, the lift force on a rotating sphere in a uniform unsheared flow acts in the same direction independent of particle Reynolds numbers. Approximate expressions for the drag and lift coefficients for a rotating sphere in a linear shear flow are proposed over the wide range of 1[les ]Rep[les ]500.


2013 ◽  
Vol 734 ◽  
pp. 567-594 ◽  
Author(s):  
A. Radi ◽  
M. C. Thompson ◽  
A. Rao ◽  
K. Hourigan ◽  
J. Sheridan

AbstractA recent numerical study by Rao et al. (J. Fluid Mech., vol. 717, 2013, pp. 1–29) predicted the existence of several previously unobserved linearly unstable three-dimensional modes in the wake of a spinning cylinder in cross-flow. While linear stability analysis suggests that some of these modes exist for relatively limited ranges of Reynolds numbers and rotation rates, this may not be true for fully developed nonlinear wakes. In the current paper, we present the results of water channel experiments on a rotating cylinder in cross-flow, for Reynolds numbers $200\leqslant \mathit{Re}\leqslant 275$ and non-dimensional rotation rates $0\leqslant \alpha \leqslant 2. 5$. Using particle image velocimetry and digitally post-processed hydrogen bubble flow visualizations, we confirm the existence of the predicted modes for the first time experimentally. For instance, for $\mathit{Re}= 275$ and a rotation rate of $\alpha = 1. 7$, we observe a subharmonic mode, mode C, with a spanwise wavelength of ${\lambda }_{z} / d\approx 1. 1$. On increasing the rotation rate, two modes with a wavelength of ${\lambda }_{z} / d\approx 2$ become unstable in rapid succession, termed modes D and E. Mode D grows on a shedding wake, whereas mode E consists of streamwise vortices on an otherwise steady wake. For $\alpha \gt 2. 2$, a short-wavelength mode F appears localized close to the cylinder surface with ${\lambda }_{z} / d\approx 0. 5$, which is presumably a manifestation of centrifugal instability. Unlike the other modes, mode F is a travelling wave with a spanwise frequency of ${\mathit{St}}_{3D} \approx 0. 1$. In addition to these new modes, observations on the one-sided shedding process, known as the ‘second shedding’, are reported for $\alpha = 5. 1$. Despite suggestions from the literature, this process seems to be intrinsically three-dimensional. In summary, our experiments confirm the linear predictions by Rao et al., with very good agreement of wavelengths, symmetries and the phase velocity for the travelling mode. Apart from this, these experiments examine the nonlinear saturated state of these modes and explore how the existence of multiple unstable modes can affect the selected final state. Finally, our results establish that several distinct three-dimensional instabilities exist in a relatively confined area on the $\mathit{Re}$–$\alpha $ parameter map, which could account for their non-detection previously.


Author(s):  
Halil Yalcin Akdeniz

In this study, it is aimed to assess the aerodynamic and flight effects of the flap design on an airfoil. For this purpose, NACA 4415 type wing profile, which can also be used in unmanned aerial vehicles (UAVs), is selected. The original design and the +5-degree flapped design which has constant other design features are compared. Assessments are performed under constant Reynolds numbers and an angle of attack between 0-10 degrees with a 1-degree interval. Analyses are made using the open-source software XFLR5. For the flapped design is named NACA 4415-2, some basic aerodynamic performance parameters such as coefficient of drag (CD), coefficient of lift (CL) coefficient of pressure (Cp) maximum lift coefficient (Clmax) and minimum stall velocity (Vstall) have been observed. According to results, when the flap with 5o is added to the airfoil, it has been observed that the CL and Lift force of the original design of the airfoil increase significantly, CD of the airfoil increase partially, and the pressure coefficient tends to decrease significantly. Furthermore, it has been observed that while the minimum stall velocity has decreased, Clmax values increased.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 23
Author(s):  
Alief Avicenna Luthfie ◽  
Dedik Romahadi ◽  
Hanif Ghufron ◽  
Solli Dwi Murtyas

Spoiler attached on the rear part of a car can generate drag force and negative lift force, called downforce. This drag force can increase air resistance to the car, meanwhile, a negative lift force can improve the car’s stability and safety. Refer to many researchers, the shape and the angle of the spoiler give different aerodynamic effects and therefore give a different value of drag force and lift force. Based on these facts, this study was focused on the analysis of different spoiler angle attached to a mini MPV car to drag and lift force generated by the spoiler. The method used in this study is a numerical simulation using the Computational Fluid Dynamics (CFD) technique. The analysis was carried out at different spoiler angle and car’s speed. The spoiler angles are -20o, -10o, 0o, 10o, and 20o. The car’s speeds are 40 km/h, 60 km/h, 80 km/h, 100 km/h, and 120 km/h. Then the drag and lift force and their coefficient generated by different spoiler angles were being investigated at specified speeds. The result shows that higher spoiler angles generate higher drag and lower lift. Spoiler angles higher than 0o generate negative lift force, otherwise generate positive lift force. Therefore, to increase a car’s stability and safety, it is recommended to use a spoiler angle higher than 0o. Based on the result, it is best to use spoiler angle 10o because it generates negative lift force with -0.05 lift coefficient and 0,68 drag coefficient.


1998 ◽  
Vol 368 ◽  
pp. 81-126 ◽  
Author(s):  
DOMINIQUE LEGENDRE ◽  
JACQUES MAGNAUDET

The three-dimensional flow around a spherical bubble moving steadily in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations. The bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-stress condition and does not induce any rotation of the bubble. The main goal of the present study is to provide a complete description of the lift force experienced by the bubble and of the mechanisms responsible for this force over a wide range of Reynolds number (0.1[les ]Re[les ]500, Re being based on the bubble diameter) and shear rate (0[les ]Sr[les ]1, Sr being the ratio between the velocity difference across the bubble and the relative velocity). For that purpose the structure of the flow field, the influence of the Reynolds number on the streamwise vorticity field and the distribution of the tangential velocities at the surface of the bubble are first studied in detail. It is shown that the latter distribution which plays a central role in the production of the lift force is dramatically dependent on viscous effects. The numerical results concerning the lift coefficient reveal very different behaviours at low and high Reynolds numbers. These two asymptotic regimes shed light on the respective roles played by the vorticity produced at the bubble surface and by that contained in the undisturbed flow. At low Reynolds number it is found that the lift coefficient depends strongly on both the Reynolds number and the shear rate. In contrast, for moderate to high Reynolds numbers these dependences are found to be very weak. The numerical values obtained for the lift coefficient agree very well with available asymptotic results in the low- and high-Reynolds-number limits. The range of validity of these asymptotic solutions is specified by varying the characteristic parameters of the problem and examining the corresponding evolution of the lift coefficient. The numerical results are also used for obtaining empirical correlations useful for practical calculations at finite Reynolds number. The transient behaviour of the lift force is then examined. It is found that, starting from the undisturbed flow, the value of the lift force at short time differs from its steady value, even when the Reynolds number is high, because the vorticity field needs a finite time to reach its steady distribution. This finding is confirmed by an analytical derivation of the initial value of the lift coefficient in an inviscid shear flow. Finally, a specific investigation of the evolution of the lift and drag coefficients with the shear rate at high Reynolds number is carried out. It is found that when the shear rate becomes large, i.e. Sr=O(1), a small but consistent decrease of the lift coefficient occurs while a very significant increase of the drag coefficient, essentially produced by the modifications of the pressure distribution, is observed. Some of the foregoing results are used to show that the well-known equality between the added mass coefficient and the lift coefficient holds only in the limit of weak shears and nearly steady flows.


Sign in / Sign up

Export Citation Format

Share Document