Internal gravity waves: critical layer absorption in a rotating fluid

1975 ◽  
Vol 70 (2) ◽  
pp. 287-304 ◽  
Author(s):  
R. Grimshaw

The propagation of internal gravity waves in a shear flow in a rotating fluid is examined for the case when the rotation vector is inclined to the vertical. It is shown that internal gravity waves approaching a critical level, where ω*, the Doppler-shifted frequency, equals 2ΩV, the vertical component of the Coriolis parameter, will be either transmitted or absorbed according as \[ W_g\omega^{*}2\Omega_V\{m(U_z + 2\Omega_H)-lV_z\}\lessgtr 0; \] here Wg is the vertical group velocity, 2ΩH is the horizontal component of the Coriolis parameter, l and m are the easterly and northerly wavenumber components, and Uz and Vz are the shear rates of the easterly and northerly components of the mean flow. Between critical levels, wave action flux is conserved. However, for a wave absorbed at a critical level, the wave action flux is attenuated by a factor exp { − 2π|m(Uz + 2ΩH) − lVz]/(lUz + mVz)|}. The phenomenon is also analysed using a WKBJ approximation.

1971 ◽  
Vol 50 (3) ◽  
pp. 545-563 ◽  
Author(s):  
R. J. Breeding

The behaviour of internal gravity waves near a critical level is investigated by means of a transient two dimensional finite difference model. All the important non-linear, viscosity and thermal conduction terms are included, but the rotational terms are omitted and the perturbations are assumed to be incompressible. For Richardson numbers greater than 2·0 the interaction of the incident wave and the mean flow is largely as predicted by the linear theory–very little of the incident wave penetrates through the critical level and almost all of the wave's energy and momentum are absorbed by changes in the original wind. However, these changes in the wind are centred above the critical level, so that the change in the wind has only a small effect on the height of the critical level. For Richardson numbers less than 2·0 and greater than 0·25 a significant fraction of the incident wave is reflected, part of which could have been predicted by the linear theory. For these stable Richardson numbers a steady state is apparently reached where the maximum wind change continues to grow slowly, but the minimum Richardson number and wave magnitudes remain constant. This condition represents a balance between the diffusion outward of the added momentum and the rate at which it is absorbed. For Richardson numbers less than 0·25, over-reflexion, predicted from the linear theory, is observed, but because the system is dynamically unstable no over-reflecting steady state is ever reached.


2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


1997 ◽  
Vol 15 (12) ◽  
pp. 1570-1580 ◽  
Author(s):  
N. M. Gavrilov

Abstract. The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsaturated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


1975 ◽  
Vol 71 (3) ◽  
pp. 497-512 ◽  
Author(s):  
R. Grimshaw

The interaction between internal gravity waves in a rotating frame and the mean flow is discussed for the case when the properties of the mean flow vary slowly on a scale determined by the local wave structure. The principle of conservation of wave action is established. It is shown that the main effect of the waves on the Lagrangian mean velocity is due to an appropriate ‘radiation stress’ tensor. A circulation theorem and a potential-vorticity equation are derived for the mean velocity.


1998 ◽  
Vol 375 ◽  
pp. 113-141 ◽  
Author(s):  
ANDREAS DÖRNBRACK

The characteristics of turbulence caused by three-dimensional breaking of internal gravity waves beneath a critical level are investigated by means of high-resolution numerical simulations. The flow evolves in three stages. In the first one the flow is two-dimensional: internal gravity waves propagate vertically upwards and create a convectively unstable region beneath the critical level. Convective instability leads to turbulent breakdown in the second stage. The developing three-dimensional mixed region is organized into shear-driven overturning rolls in the plane of wave propagation and into counter-rotating streamwise vortices in the spanwise plane. The production of turbulent kinetic energy by shear is maximum. In the last stage, shear production and mechanical dissipation of turbulent kinetic energy balance.The evolution of the flow depends on topographic parameters (wavelength and amplitude), on shear and stratification as well as on viscosity. Here, only the implications of the viscosity for the instability structure and evolution in terms of the Reynolds number are considered. Smaller viscosity leads to earlier onset of convective instability and overturning waves. However, viscosity retards the onset of smaller-scale three-dimensional instabilities and leads to a reduced momentum transfer to the mean flow below the critical level. Hence, the formation of secondary overturning rolls is sustained by lower viscosity.The budgets of total kinetic and potential energies are calculated. Although the domain-averaged turbulent kinetic energy is less than 1% of the total kinetic energy, it is strong enough to form a patchy and intermittent turbulent mixed layer below the critical level.


2021 ◽  
Author(s):  
Georg Sebastian Voelker ◽  
Mark Schlutow

<p>Internal gravity waves are a well-known mechanism of energy redistribution in stratified fluids such as the atmosphere. They may propagate from their generation region, typically in the Troposphere, up to high altitudes. During their lifetime internal waves couple to the atmospheric background through various processes. Among the most important interactions are the exertion of wave drag on the horizontal mean-flow, the heat generation upon wave breaking, or the mixing of atmospheric tracers such as aerosols or greenhouse gases.</p><p>Many of the known internal gravity wave properties and interactions are covered by linear or weakly nonlinear theories. However, for the consideration of some of the crucial effects, like a reciprocal wave-mean-flow interaction including the exertion of wave drag on the mean-flow, strongly nonlinear systems are required. That is, there is no assumption on the wave amplitude relative to the mean-flow strength such that they may be of the same order.</p><p>Here, we exploit a strongly nonlinear Boussinesq theory to analyze the stability of a stationary internal gravity wave which is refracted at the vertical edge of a horizontal jet. Thereby we assume that the incident wave is horizontally periodic, non-hydrostatic, and vertically modulated. Performing a linear stability analysis in the vicinity of the jet edge we find necessary and sufficient criteria for instabilities to grow. In particular, the refracted wave becomes unstable if its incident amplitude is large enough and both mean-flow horizontal winds, below and above the edge of the jet, do not exceed particular upper bounds.</p>


1972 ◽  
Vol 54 (2) ◽  
pp. 217-240 ◽  
Author(s):  
N. Rudraiah ◽  
M. Venkatachalappa

Alfvén-gravitational waves propagating in a Boussinesq, inviscid, adiabatic, perfectly conducting fluid in the presence of a uniform aligned magnetic field in which the mean horizontal velocityU(z)depends on heightzonly are considered. The governing wave equation has three singularities, at the Doppler-shifted frequencies Ωd= 0, ± ΩA, where ΩAis the Alfvén frequency. Hence the effect of the Lorentz force is to introduce two more critical levels, called hydromagnetic critical levels, in addition to the hydrodynamic critical level. To study the influence of magnetic field on the attenuation of waves two situations, one concerning waves far away from the critical levels (i.e. Ωd[Gt ] ΩA) and the other waves at moderate distances from the critical levels (i.e. Ωd> ΩA), are investigated. In the former case, if the hydrodynamic Richardson numberJHexceeds one quarter the waves are attenuated by a factor exp{−2π(JH−¼)½} as they pass through the hydromagnetic critical levels, at which Ωd= ± ΩA, and momentum is transferred to the mean flow there. Whereas in the case of waves at moderate distances from the critical levels the ratio of momentum fluxes on either side of the hydromagnetic critical levels differ by a factor exp {−2π(J−¼)½}, whereJ(> ¼) is the algebraic sum of hydrodynamic and hydromagnetic Richardson numbers. Thus the solutions to the hydromagnetic system approach asymptotically those of the hydrodynamic system sufficiently far on either side of the magnetic critical layers, though their behaviour in the vicinity of such levels is quite dissimilar. There is no attenuation and momentum transfer to the mean flow across the hydrodynamic critical level, at which Ωd= 0. The general theory is applied to a particular problem of flow over a sinusoidal corrugation. This is significant in considering the propagation of Alfvén-gravity waves, in the presence of a geomagnetic field, from troposphere to ionosphere.


1976 ◽  
Vol 77 (4) ◽  
pp. 789-823 ◽  
Author(s):  
Peter Mtfller

The interaction between short internal gravity waves and a larger-scale mean flow in the ocean is analysed in the Wkbj approximation. The wave field determines the radiation-stress term in the momentum equation of the mean flow and a similar term in the buoyancy equation. The mean flow affects the propagation characteristics of the wave field. This cross-coupling is treated as a small perturbation. When relaxation effects within the wave field are considered, the mean flow induces a modulation of the wave field which is a linear functional of the spatial gradients of the mean current velocity. The effect that this modulation itself has on the mean flow can be reduced to the addition of diffusion terms to the equations for the mass and momentum balance of the mean flow. However, there is no vertical diffusion of mass and other passive properties. The diffusion coefficients depend on the frequency spectrum and the relaxation time of the internal-wave field and can be evaluated analytically. The vertical viscosity coefficient is found to be vv [ape ] 4 x 103cm2/s and exceeds values typically used in models of the general circulation by at least two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document