The structure of strongly stratified flow over hills: dividing-streamline concept

1985 ◽  
Vol 152 ◽  
pp. 249-288 ◽  
Author(s):  
William H. Snyder ◽  
Roger S. Thompson ◽  
Robert E. Eskridge ◽  
Robert E. Lawson ◽  
Ian P. Castro ◽  
...  

In stably stratified flow over a three-dimensional hill, we can define a dividing streamline that separates those streamlines that pass around the hill from those that pass over the hill. The height Hs of this dividing streamline can be estimated by Sheppard's simple energy argument; fluid parcels originating far upstream of a hill at an elevation above Hs have sufficient kinetic energy to rise over the top, whereas those below Hs must pass around the sides. This prediction provides the basis for analysing an extensive range of laboratory observations and measurements of stably stratified flow over a variety of shapes and orientations of hills and with different upwind density and velocity profiles. For symmetric hills and small upwind shear, Sheppard's expression provides a good estimate for Hs. For highly asymmetric flow and/or in the presence of strong upwind shear, the expression provides a lower limit for Hs. As the hills become more nearly two-dimensional, these experiments become less well defined because steady-state conditions take progressively longer to be established. The results of new studies are presented here of the development of the unsteady flow upwind of two-dimensional hills in a finite-length towing tank. These measurements suggest that a very long tank would be required for steady-state conditions to be established upstream of long ridges with or without small gaps and cast doubt upon the validity of previous laboratory studies.

1944 ◽  
Vol 11 (3) ◽  
pp. A149-A161
Author(s):  
Gabriel Kron

Abstract This paper presents equivalent circuits representing the partial differential equations of the theory of elasticity for bodies of arbitrary shapes. Transient, steady-state, or sinusoidally oscillating elastic-field phenomena may now be studied, within any desired degree of accuracy, either by a “network analyzer,” or by numerical- and analytical-circuit methods. Such problems are the propagation of elastic waves, determination of the natural frequencies of vibration of elastic bodies, or of stresses and strains in steady-stressed states. The elastic body may be non-homogeneous, may have arbitrary shape and arbitrary boundary conditions, it may rotate at a uniform angular velocity and may, for representation, be divided into blocks of uneven length in different directions. The circuits are developed to handle both two- and three-dimensional phenomena. They are expressed in all types of orthogonal curvilinear reference frames in order to simplify the boundary relations and to allow the solution of three-dimensional problems with axial and other symmetry by the use of only a two-dimensional network. Detailed circuits are given for the important cases of axial symmetry, cylindrical co-ordinates (two-dimensional) and rectangular co-ordinates (two- and three-dimensional). Nonlinear stress-strain relations in the plastic range may be handled by a step-by-step variation of the circuit constants. Nonisotropic bodies and nonorthogonal reference frames, however, require an extension of the circuits given. The circuits for steady-state stress and small oscillation phenomena require only inductances and capacitors, while the circuits for transients require also standard (not ideal) transformers. A companion paper deals in detail with numerical and experimental methods to solve the equivalent circuits.


1996 ◽  
Vol 306 ◽  
pp. 167-181 ◽  
Author(s):  
John C. Bowman

Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k−5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy-range law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. Implications for conventional numerical simulations are discussed. These results underscore the asymptotic nature of inertial-range scaling laws.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Atta Oveisi ◽  
Mohammad Gudarzi ◽  
Seyyed Mohammad Hasheminejad

One of the interesting fields that attracted many researchers in recent years is the smart structures. The piezomaterials, because of their ability in converting both mechanical stress and electricity to each other, are very applicable in this field. However, most of the works available used various inexact two-dimensional theories with certain types of simplification, which are inaccurate in some applications such as thick shells while, in some applications due to request of large displacement/stress, thick piezoelectric panel is needed and two-dimensional theories have not enough accuracy. This study investigates the dynamic steady state response and natural frequency of a piezoelectric circular cylindrical panel using exact three-dimensional solutions based on this decomposition technique. In addition, the formulation is written for both simply supported and clamped boundary conditions. Then the natural frequencies, mode shapes, and dynamic steady state response of the piezoelectric circular cylindrical panel in frequency domain are validated with commercial finite element software (ABAQUS) to show the validity of the mathematical formulation and the results will be compared, finally.


2012 ◽  
Vol 8 (4) ◽  
pp. 492-494 ◽  
Author(s):  
Sang Ah Lee ◽  
Elizabeth S. Spelke ◽  
Giorgio Vallortigara

Spatial reorientation by layout geometry occurs in numerous species, but its underlying mechanisms are debated. While some argue that navigating animals' sense of place is based on geometric computations over three-dimensional representations, others claim it depends on panoramic image-matching processes. Because children reorient by subtle three-dimensional perturbations of the terrain and not by salient two-dimensional brightness contours on surfaces or freestanding columns, children's sense of place cannot be explained by image matching. To test image-matching theories in a different species, the present experiment investigates the reorientation performance of domestic chicks ( Gallus gallus ) in environments similar to those used with children. Chicks, like children, spontaneously reoriented by geometric relationships of subtle three-dimensional terrains, and not by salient two-dimensional brightness contours on surfaces or columns. These findings add to the evidence for homologous navigation systems in humans and other vertebrates, and they cast doubt on image-matching theories of reorientation in these species.


Sign in / Sign up

Export Citation Format

Share Document