Bifurcation of swirl in liquid cones

1995 ◽  
Vol 300 ◽  
pp. 169-205 ◽  
Author(s):  
Vladimir Shtern ◽  
Antonio Barrero

We show that rotation appears owing to bifurcation in primarily pure meridional steady motion of viscous incompressible fluid. This manifestation of the laminar axisymmetric 'swirl dynamo’ occurs in flows inside liquid conical menisci with the cone half-angle θc < 90°. The liquid flows towards the cone apex near the surface and moves away along the axis driven by (i) surface shear stresses (typical for electrosprays) or (ii) by body Lorentz forces (e.g. in the process of cathode eruption). When the motion intensity increases and passes a critical value, new swirling regimes appear resulting from the supercritical pitchfork bifurcation. This agrees with recent observations of swirl in Taylor cones. We find that when the swirl Reynolds number Γc reaches a threshold value, flow separation occurs and the meridional motion becomes two-cellular with inflows near both the surface and the axis, and an outflow near the cone θ = θs, 0 < θs < θc. In the limit of high Γc, the angular thickness of the near-surface cell tends to zero. In case (i) the swirl is concentrated near the surface while the motion inside the inner cell becomes purely meridional with the radial velocity being uniform. We also study the two-phase flow of a liquid inside and a gas outside the meniscus. Flow separation occurs in both media and then swirl is concentrated near the interface. In case (ii) we reveal another interesting effect: a cascade of flow separations near the axis. As the driving forces increase, meridional motion becomes multi-cellular although very slow in comparison with swirl. To cover all ranges of parameters we combine numerical calculations and asymptotic analyses.

2003 ◽  
Vol 1853 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Marc Novak ◽  
Bjorn Birgisson ◽  
Reynaldo Roque

Instability rutting generally occurs within the top 2 in. of the asphalt layer when the structural properties of the asphalt concrete are inadequate to resist the stresses imposed on it. Several researchers have presented observations in attempts to explain instability rutting, but a clear identification of the mechanism does not exist. Stresses in the asphalt layer caused by measured tire interface stresses were analyzed in three dimensions by using finite elements to identify possible mechanisms for instability rutting. The analysis showed that radial tires produce high near-surface shear stresses at low confinements, which are not predicted with traditional uniform vertical loading conditions, in the region where instability rutting is known to occur. The resulting shear stresses tend to be shallower than for the uniformly loaded case, and they are focused in areas where instability rutting has been observed. The observed stress states imply that the characterization of instability rutting requires testing at these low confinement (and sometimes tensile) stress states, rather than at the higher stress states typically used in the strength characterization of mixtures.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


2021 ◽  
Author(s):  
Myron van Damme

AbstractAn accurate means of predicting erosion rates is essential to improve the predictive capability of breach models. During breach growth, erosion rates are often determined with empirical equations. The predictive capability of empirical equations is governed by the range for which they have been validated and the accuracy with which empirical coefficients can be established. Most empirical equations thereby do not account for the impact of material texture, moisture content, and compaction energy on the erosion rates. The method presented in this paper acknowledges the impact of these parameters by accounting for the process of dilation during erosion. The paper shows how, given high surface shear stresses, the erosion rate can be quantified by applying the principles of soil mechanics. Key is thereby to identify that stress balance situation for which the dilatency induced inflow gives a maximum averaged shear resistance. The effectiveness of the model in predicting erosion rates is indicated by means of three validation test cases. A sensitivity analysis of the method is also provided to show that the predictions lie within the range of inaccuracy of the input parameters.


2016 ◽  
Vol 23 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Dunja Perić ◽  
Paul A. Bartley ◽  
Lawrence Davis ◽  
Ali Ulvi Uzer ◽  
Cahit Gürer

AbstractLignin is a coproduct of biofuel and paper industries, which exhibits binding qualities when mixed with water. Lignin is an ideal candidate for a sustainable stabilization of unpaved roads. To this end, an experimental program was devised and carried out to quantify effects of lignin on compaction and early age shear strength behaviors of sand. Samples were prepared by mixing a particular type of coproduct called calcium lignosulfonate (CaL) with sand and water. Based on the extensive analyses of six series of strength tests, it was found that a normalized cohesion increased with an increasing normalized areas ratio. Normalizations were carried out by dividing the cohesion and area ratio by gravimetric CaL content whereby the area ratio was obtained by dividing the portion of the cross-sectional area occupied with lignosulfonate-water (CaL-W) paste by the total cross-sectional area. While the increase in the normalized cohesion eventually leveled out, the cohesion peaked at 6% of CaL. Thus, sand-CaL-water (S-CaL-W) mixes sustained larger shear stresses than dry sand for a range of normal stresses below the limiting normal stress. Consequently, the early age behavior indicates that adding CaL-W to sand is clearly beneficial in the near-surface applications in dry sand.


Author(s):  
Zbigniew Mikulski ◽  
Vidar Hellum ◽  
Tom Lassen

The present paper presents a two-phase model for the fatigue damage evolution in welded steel joints. The argument for choosing a two-phase model is that crack initiation and subsequent crack propagation involve different damage mechanisms and should be treated separately. The crack initiation phase is defined as the number of cycles to reach a crack depth of 0.1 mm. This phase is modelled based on the Dang Van multiaxial stress approach. Both a multiaxial stress situation introduced by the acting loads and the presence of the multiaxial welding residual stresses are accounted for. The local notch effect at the weld toe becomes very important and the irregular weld toe geometry is characterized by extreme value statistics for the weld toe angle and radius. The subsequent crack growth is based in classical fracture based on the Paris law including the effect of the Stress Intensity Factor Range (SIFR) threshold value. The unique fatigue crack growth rate curve suggested by Huang, Moan and Cui is adopted. This approach keeps the growth rate parameters C and m constant whereas an effective SIFR is calculated for the actual stress range and loading ratio. The model is developed and verified based on fatigue crack growth data from fillet welded joints where cracks are emanating from the weld toe. For this test series measured crack depths below 0.1 mm are available. The two-phase model was in addition calibrated to fit the life prediction in the rule based S-N curve designated category 71 (or class F). A supplementary S-N curve is obtained by the Random Fatigue Limit Method (RFLM). The test results and the fitted model demonstrated that the crack initiation phase in welded joins is significant and cannot be ignored. The results obtained by the Dang Van approach for the initiation phase are promising but the modelling is not yet completed. The fracture mechanics model for the propagation phase gives good agreement with measured crack growth. However, it seems that the prediction of crack retardation based on a threshold value for the SIFR gives a fatigue limit that is overly optimistic for small cracks at the weld toe. The threshold value has been determined based on tests with rather large central cracks in plates. The validity for applying this threshold value for small cracks at the weld toe is questioned. As the present two-phase model is based on applied mechanics for both phases the parameters that have an influence on the fatigue damage evolution are directly entering into the model. Any change in these parameters can then be explicitly taken into account in logical and rational manner for fatigue life predictions. This not the case with the rule based S-N curves that are based on pure statistical treatment of the bulk fatigue life.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Reda Ragab ◽  
Ting Wang

A phase Doppler particle analyzer (PDPA) system is employed to measure the two-phase mist flow behavior including flow velocity field, droplet size distribution, droplet dynamics, and turbulence characteristics. Based on the droplet measurements made through PDPA, a projected profile describing how the air–mist coolant jet flow spreads and eventually blends into the hot main flow is prescribed for both cylindrical and fan-shaped holes. The mist film layer consists of two layers: a typical coolant film layer (cooling air containing the majority of the droplets) and a wider droplet layer containing droplets outside the film layer. Thanks to the higher inertia possessed by larger droplets (>20 μm in diameter) at the injection hole, the larger droplets tend to shoot across the coolant film layer, resulting in a wider droplet layer than the coolant film layer. The wider droplet layer boundaries are detected by measuring the droplet data rate (droplet number per second) distribution, and it is identified by a wedge-shaped enclosure prescribed by the data rate distribution curve. The coolant film layer is prescribed by its core and its upper boundary. The apex of the data rate curve, depicted by the maximum data rate, roughly indicates the core region of the coolant film layer. The upper boundary of the coolant film layer, characterized by active mixing with the main flow, is found to be close to relatively high values of local Reynolds shear stresses. With the results of PDPA measurements and the prescribed coolant film and droplet layer profiles, the heat transfer results on the wall presented in Part I are re-examined, and the fundamental mist-flow physics are analyzed. The three-dimensional (3D) droplet measurements show that the droplets injected from the fan-shaped holes tend to spread wider in lateral direction than cylinder holes and accumulate at the location where the neighboring coolant film layers meet. This flow and droplet behavior explain the higher cooling performance as well as mist-enhancement occurs between the fan-shaped cooling holes, rather than along the hole's centerline as demonstrated in the case using the cylindrical holes.


2021 ◽  
Vol 11 (23) ◽  
pp. 11249
Author(s):  
Ioannis Koutsoupakis ◽  
Yiannis Tsompanakis ◽  
Pantelis Soupios ◽  
Panagiotis Kirmizakis ◽  
SanLinn Kaka ◽  
...  

This study develops a comprehensive seismic risk model for the city of Chania, in Greece, which is located ina highly seismic-prone region due to the occurrenceof moderate to large earthquakes because of the nearby major subduction zone between African and Eurasian tectonic plates. The main aim is to reduce the seismic risk for the study area by incorporating the spatial distribution of the near-surface shear wave velocity model and the soil classification, along with all possible seismic sources, taking into account historical events. The study incorporates and correlates various ground motion scenarios and geological fault zones as well as information on existing buildings to develop a seismic risk model using QuakeIST software, and then the seismic hazard and a realistic prediction of resulting future adverse effects are assessed. The developed model can assist the municipal authorities of Chania to be prepared for potential seismic events, as well as city planners and decisionmakers, who can use the model as an effective decision-making tool to identify the seismic vulnerability of the city buildings and infrastructure. Thus, this study enables the implementation of an appropriate and viable earthquake-related hazards strategy to mitigate damage and losses in future earthquakes.


Sign in / Sign up

Export Citation Format

Share Document