scholarly journals A process-based method for predicting lateral erosion rates

2021 ◽  
Author(s):  
Myron van Damme

AbstractAn accurate means of predicting erosion rates is essential to improve the predictive capability of breach models. During breach growth, erosion rates are often determined with empirical equations. The predictive capability of empirical equations is governed by the range for which they have been validated and the accuracy with which empirical coefficients can be established. Most empirical equations thereby do not account for the impact of material texture, moisture content, and compaction energy on the erosion rates. The method presented in this paper acknowledges the impact of these parameters by accounting for the process of dilation during erosion. The paper shows how, given high surface shear stresses, the erosion rate can be quantified by applying the principles of soil mechanics. Key is thereby to identify that stress balance situation for which the dilatency induced inflow gives a maximum averaged shear resistance. The effectiveness of the model in predicting erosion rates is indicated by means of three validation test cases. A sensitivity analysis of the method is also provided to show that the predictions lie within the range of inaccuracy of the input parameters.

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Kaushik K. Rangharajan ◽  
Matthew J. Gerber ◽  
Shaurya Prakash

Low Reynolds number flow of liquids over micron-sized structures and the control of subsequently induced shear stress are critical for the performance and functionality of many different microfluidic platforms that are extensively used in present day lab-on-a-chip (LOC) domains. However, the role of geometric form in systematically altering surface shear on these microstructures remains poorly understood. In this study, 36 microstructures of diverse geometry were chosen, and the resultant overall and facet shear stresses were systematically characterized as a function of Reynolds number to provide a theoretical basis to design microstructures for a wide array of applications. Through a set of detailed numerical calculations over a broad parametric space, it was found that the top facet (with respect to incident flow) of the noncylindrical microstructures experiences the largest surface shear stress. By systematically studying the variation of the physical dimensions of the microstructures and the angle of incident flow, a comprehensive regime map was developed for low to high surface shear structures and compared against the widely studied right circular cylinder in cross flow.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1055
Author(s):  
Gulenay Guner ◽  
Dogacan Yilmaz ◽  
Ecevit Bilgili

This study examined the impact of stirrer speed and bead material loading on fenofibrate particle breakage during wet stirred media milling (WSMM) via three kinetic models and a microhydrodynamic model. Evolution of median particle size was tracked via laser diffraction during WSMM operating at 3000–4000 rpm with 35–50% (v/v) concentration of polystyrene or zirconia beads. Additional experiments were performed at the center points of the above conditions, as well as outside the range of these conditions, in order to test the predictive capability of the models. First-order, nth-order, and warped-time kinetic models were fitted to the data. Main effects plots helped to visualize the influence of the milling variables on the breakage kinetics and microhydrodynamic parameters. A subset selection algorithm was used along with a multiple linear regression model (MLRM) to delineate how the breakage rate constant k was affected by the microhydrodynamic parameters. As a comparison, a purely empirical correlation for k was also developed in terms of the process/bead parameters. The nth-order model was found to be the best model to describe the temporal evolution; nearly second-order kinetics (n ≅ 2) was observed. When the process was operated at a higher stirrer speed and/or higher loading with zirconia beads as opposed to polystyrene beads, the breakage occurred faster. A statistically significant (p-value ≤ 0.01) MLRM of three microhydrodynamic parameters explained the variation in the breakage rate constant best (R2 ≥ 0.99). Not only do the models and the nth-order kinetic–microhydrodynamic correlation enable deeper process understanding toward developing a WSMM process with reduced cycle time, but they also provide good predictive capability, while outperforming the purely empirical correlation.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


2009 ◽  
Vol 1217 ◽  
Author(s):  
A. C. Buchanan, III ◽  
Michelle K. Kidder

AbstractOrdered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity of phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant β-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert “spacer” molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M’ species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO2 into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.


2021 ◽  
Author(s):  
Dante Föllmi ◽  
Jantiene Baartman ◽  
João Pedro Nunes ◽  
Akli Benali

<p><strong>Abstract</strong></p><p>Wildfires have become an increasing threat for Mediterranean ecosystems, due to increasing climate change induced wildfire activity and changing land management practices. Apart from the initial risk, fire can alter the soil in various ways depending on different fire severities and thus post-fire erosion processes are an important component in assessing wildfires’ negative effects. Recent post-fire erosion (modelling) studies often focus on a short time window and lack the attention for sediment dynamics at larger spatial scales. Yet, these large spatial and temporal scales are fundamental for a better understanding of catchment sediment dynamics and long-term destructive effects of multiple fires on post-fire erosion processes. In this study the landscape evolution model LAPSUS was used to simulate erosion and deposition in the 404 km<sup>2</sup> Águeda catchment in northern-central Portugal over a 41 year (1979-2020) timespan. To include variation in fire severity and its impact on the soil four burnt severity classes, represented by the difference Normalized Burn Ratio (dNBR), were parameterized. Although model calibration was difficult due to lack of spatial and temporal measured data, the results show that average post-fire net erosion rates were significantly higher in the wildfire scenarios (5.95 ton ha<sup>-1</sup> yr<sup>-1</sup>) compared to those of a non-wildfire scenario (0.58 ton ha<sup>-1</sup> yr<sup>-1</sup>). Furthermore, erosion values increased with a higher level of burnt severity and multiple fires increased the overall sediment build-up in the catchment, fostering an increase in background sediment yield. Simulated erosion patterns showed great spatial variability with large deposition and erosion rates inside streams. Due to this variability, it was difficult to identify land uses that were most sensitive for post-fire erosion, because some land-uses were located in more erosion-sensitive areas (e.g. streams, gullies) or were more affected by high burnt severity levels than others. Despite these limitations, LAPSUS performed well on addressing spatial sediment processes and has the ability to contribute to pre-fire management strategies. For instance, the percentage soil loss map (i.e. comparison of erosion and soil depth maps) could identify locations at risk.</p>


Author(s):  
Mohammad Azadeh ◽  
Hamidreza Khakrah

This study numerically investigated the behavior of a Newtonian droplet impacting a heated porous surface. In this regard, a two-phase finite volume code was used for laminar flow. The time adaptive method was applied to enhance the accuracy of results and better convergence of the solving process. Also, the dynamic grid adaptation technique was adopted to predict the liquid-air interface precisely. The results were first validated against experimental data at different Weber numbers. Then the effect of variations in the droplet temperature was investigated on the spreading factor. The obtained results revealed that the rise in droplet temperature led to an increase in the maximum spreading diameter due to the reduction in the effects of viscosity, density, and surface tension. In the next step, the effects of droplet impact on the hydrophilic and superhydrophobic surfaces with the porosities of 20–80% were evaluated. The obtained results revealed that the increase in the surface porosity caused a decrease in the droplet diameter during the impact time. Also, at high surface porosity values, the decline in the contact angle influence on the droplet dynamic behavior was observed.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Liu ◽  
Juan Zhang ◽  
Tao Zhang ◽  
Huidong Zhang

Abrasive gas jet technologies are efficient and beneficial and are widely used to drill metal and glass substrates. When the inlet pressure is increased, gas jets could be powerful enough to break rock. They have potential uses in coal-bed methane exploration and drilling because of their one-of-a-kind nonliquid jet drilling, which avoids water invasion and borehole collapse. Improving the efficiency of rock breakage using abrasive gas jets is an essential precondition for future coal-bed methane exploration. The nozzle structure is vital to the flow field and erosion rate. Furthermore, optimizing the nozzle structure for improving the efficiency of rock breakage is essential. By combining aerodynamics and by fixing the condition of the nozzle in the drill bit, we design four types of preliminary nozzles. The erosion rates of the four nozzles are calculated by numerical simulation, enabling us to conclude that a nozzle at Mach 3 can induce maximum erosion when the pressure is 25 MPa. Higher pressures cannot improve erosion rates because the shield effect decreases the impact energy. Smaller pressures cannot accelerate erosion rates because of short expansion waves and low velocities of the gas jets. An optimal nozzle structure is promoted with extended expansion waves and less obvious shield effects. To further optimize the nozzle structure, erosion rates at various conditions are calculated using the single-variable method. The optimal nozzle structure is achieved by comparing the erosion rates of different nozzle structures. The experimental results on rock erosion are in good agreement with the numerical simulations. The optimal nozzle thus creates maximum erosion volume and depth.


2018 ◽  
Author(s):  
Stefan Hergarten ◽  
Thomas Kenkmann

Abstract. Worldwide erosion rates seem to have increased strongly since the beginning of the Quaternary, but there is still discussion about the role of glaciation as a potential driver and even whether the increase is real at all or an artefact due to losses in the long-term sedimentary record. In this study we derive estimates of average erosion rates on the time scale of some tens of million years from the terrestrial impact crater inventory. This approach is completely independent from all other methods to infer erosion rates such as river loads, preserved sediments, cosmogenic nuclides and thermochronometry. Our approach yields average erosion rates as a function of present-day topography and climate. The results confirm that topography accounts for the main part of the huge variation of erosion on Earth, but also identifies a significant systematic dependence on climate in contrast to several previous studies. We found a fivefold increase in erosional efficacy from the cold regimes to the tropical zone and that temperate and arid climates are very similar in this context. Combining our results to a worldwide mean erosion rate we found that erosion rates on the time scale of some tens of million years are at least as high as present-day rates and suggest that glaciation has a rather regional effect with a limited impact at the continental scale.


2016 ◽  
Author(s):  
Alexandra-Jane Henrot ◽  
Tanja Stanelle ◽  
Sabine Schröder ◽  
Colombe Siegenthaler ◽  
Domenico Taraborrelli ◽  
...  

Abstract. A biogenic emission scheme based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012) has been integrated into the ECHAM6-HAMMOZ chemistry climate model in order to calculate the emissions from terrestrial vegetation of 32 compounds. The estimated annual global total for the simulation period (2000–2012) is 634 Tg C yr−1. Isoprene is the main contributor to the average emission total accounting for 66 % (417 Tg C yr−1), followed by several monoterpenes (12 %), methanol (7 %), acetone (3.6 %) and ethene (3.6 %). Regionally, most of the high annual emissions are found to be associated to tropical regions and tropical vegetation types. In order to evaluate the implementation of the biogenic model in ECHAM-HAMMOZ, global and regional BVOC emissions of the reference simulation were compared to previous published experiment results with the MEGAN model. Several sensitivity simulations were performed to study the impact of different model input and parameters related to the vegetation cover and the ECHAM6 climate. BVOC emissions obtained with the biogenic model are within the range of previous published estimates. The large range of emission estimates can be attributed to the use of different input data and empirical coefficients within different setups of the MEGAN model. The biogenic model shows a high sensitivity to the changes in plant functional type (PFT) distributions and associated emission factors for most of the compounds. The global emission impact for isoprene is about −9 %, but reaches +75 % for α-pinene when switching to PFT-dependent emission factor distributions. Isoprene emissions show the highest sensitivity to soil moisture impact, with a global decrease of 12.5 % when the soil moisture activity factor is included in the model parameterization. Nudging ECHAM6 climate towards ERA-Interim reanalysis has impact on the biogenic emissions, slightly lowering the global total emissions and their interannual variability.


Sign in / Sign up

Export Citation Format

Share Document